Работа силы приложенной к вращающемуся телу. Элементарная работа силы. Работа сил, приложенных к твердому телу

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Работа внутренних сил на конечном перемещении равна нулю.

Работа силы, действующей на поступательно движущееся тело равна произведению этой силы на приращение линейного перемещения.

Работа силы, действующей на вращающееся тело равна произведению момента этой силы относительно оси вращения на приращение угла поворота: ; . Мощность:
.

Кинетическая энергия механической системы при различных видах движения.

Кинетическая энергия механической системы - скаляр, равный сумме кинетических энергий всех точек системы: .

При поступательном движении:

При вращательном движении:

При плоскопараллельном движении: , где d - расстояние от центра масс до МЦС

27. Теорема об изменении кинетической энергии материальнойточки.

Кинетическая энергия материальной точки - скаляр, равный половине произведение массы точки на квадрат ее скорости.

Основное уравнение динамики: , помножим на элементарное перемещение: ; ; . Интегрируя полученное выражение:

Теорема : изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы.

Так как работа внутренних сил равна нулю, то:
.

Теорема : изменение кинетической энергии механической системы на конечном перемещении равно сумме работ внешних сил на том же перемещении.

Принцип возможных перемещений для механической системы.

; , пусть связи, наложенные на точки механической системы двусторонние, стационарные, голономные и идеальные, тогда: .

Принцип возможных перемещений - принцип Лагранжа - для равновесия механической системы с двусторонними, стационарными, голономными и идеальными связями необходимо и достаточно, чтоб алгебраическая сумма работ задаваемых сил на возможном перемещении равнялась нулю.

Принцип Даламбера для материальной точки.

Геометрическая сумма всех приложенных к движущейся материальной точке сил и сил инерции этой точки равна нулю

Принцип Даламбера для несвободной механической системы.

В движущейся несвободной механической системе для каждой материальной точки в любой момент времени геометрическая сумма приложенных к ней задаваемых сил, реакций связи и сил инерции равна нулю. Умножив обе части выражения на r i получим: ;
.

, сумма моментов задаваемых сил, реакций связи и сил инерции относительно осей координат равна нулю.

Приведение сил инерции точек твердого тела к простейшему виду.

К системе сил инерции точек твердого тела, можно применить метод Пуансона, рассмотренный в статике. Тогда любую систему сил инерции можно привести к главному вектору сил инерции и главному моменту сил инерции.

При поступательном движении: Ф=-ma (при поступательном движении твердого тела, силы инерции его точек приводятся к главному вектору сил инерции равному по модулю произведению массы тела, на ускорение центра масс приложенному в этом центре и направленному в сторону противоположному ускорению центра масс).

При вращательном движении: М=-Iε (при вращательном движении твердого тела силы инерции его точек приводятся к главному моменту сил инерции равному произведению момента инерции тела относительно сил вращения на угловое ускорение. Направлен этот момент в сторону противоположному угловому ускорению).

При плоском движении: Ф=-ma М=-Iε (при плоском движении твердого тела силы инерции его точек приводятся к главному вектору и главному моменту сил инерции).

Общее уравнение динамики. Принцип Даламбера-Лагранжа.

Принцип Даламбера: å(P i + R i + Ф i) = 0; å(P i + R i + Ф i)Dr i = 0, полагаем. что связи, наложенные на механическую систему двусторонние, стационарные, голономные и идеальные, тогда: å(R i × Dr i) = 0;

å(P i + Ф i)Dr i = 0 - общее уравнение динамики - для движения механической системы с двусторонними, стационарными, голономными и идеальными связями сумма работ задаваемых сил и сил инерции точек системы на любом возможном перемещении равна нулю.

Вычисляя сумму элементарных работ двух внутренних сил F 1 J и F 2 J ,

получаем

F1 J dS1 cos(P1 J ,υ 1 ) + F2 J dS2 cos(P2 J ,υ 2 ) = F1 ′ M1 M1 ′ − F1 M 2 M 2 ′

т.к. каждой внутренней силе соответствует другая, равная ей по модулю и противоположная по направлению, то сумма элементарных работ всех внутренних сил тоже равна нулю.

δ A J = ∑ δ A i J = 0

Конечное перемещение является совокупностью элементарных переме-

щений, поэтому AJ = 0, т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

2.5.2. Работа внешних сил, приложенных к поступательно движущемуся телу

К каждой точке тела приложены внешние и внутренние силы (рис. 18). Так как работа внутренних сил на любом перемещении равна нулю, то следует вычислить работу лишь внешних сил F 1 E , F 2 E … F n E . При поступательном

движении траектории всех точек идентичны, а вектора элементарных перемещений геометрически равны, т.е.

dri = dr = drc .

Элементарная работа силы F i E

δ A iE = F i E dr c .

Элементарная работа всех внешних сил

δ AE = ∑ δ Ai E = ∑ F i E drc = drc ∑ Fi E = R E dr c ,

где R E - главный вектор внешних сил.

Работа на конечном перемещении

AE = ∫ R E drc .

Работа сил при поступательном перемещении твердого тела равна работе главного вектора внешних сил на элементарном перемещении центра масс.

2.5.3. Работа внешних сил, приложенных к вращающемуся телу

Предположим, что к твердому телу, вращающемуся вокруг неподвижной оси Z , приложены внешние силы F 1 E , F 2 E … F i E … F n E (рис. 19).

Вычислим работу одной силы F i E , приложенной к точке M i , описывающей окружность радиуса R i . Разложим силу F i E на три составляющие, направленные по естественным осям траектории точки M i .

E F 1

F ib

F in

Mi dSi

F iτ

Z M1 (x1 ,y1, z1 )

M2 (x2 ,y2 , z2 )

При элементарном повороте тела на угол d ϕ точка M i описывает дугу dS i = R i d ϕ . На этом перемещении работу составляет только касательная составляющая силы, а работа перпендикулярных к вектору скорости составляющих силы F in E и F ib E равна нулю.

δ A i E = F i τ E dS i = F i τ E R i d ϕ = M i E τ d ϕ = M iz E d ϕ , т.к. моменты нормальной и бинормальной составляющих силы F i E относительно оси Z равны нулю эле-

ментарная работа всех сил, приложенных к твердому телу

δ AE = ∑ δ Ai E = ∑ M iz E dϕ = dϕ ∑ Miz E = M z E dϕ .

Таким образом, элементарная работа внешних сил, приложенных к вращающемуся твердому телу равна

δ AE = M z E dϕ .

При конечном повороте тела работа внешних сила равна

AE = ∫ M z E dϕ .

Если главный момент внешних сил M z E = const , то работа внешних сил на конечном перемещении равна A = M z E (ϕ 2 − ϕ 1 ) .

Работа при вращательном движении твердого тела равна работе главного момента внешних сил относительно оси вращения на элементарном угловом перемещении.

2.6. Работа силы тяжести

Пусть точка массой m перемещается под действием силы тяжести из положения M 1 (x 1 , y 1 ,z 1 ) в положение M 2 (x 2 , y 2 ,z 2 ) (рис. 20).

Элементарная работа силы вычисляется как скалярное произведение вектора силы F (X ,Y ,Z ) на вектор элементарного перемещения dr (dx,dy,dz )

δ A = F dr = Xdx + Ydy + Zdz ,

где X ,Y ,Z - проекции силы F ,

dx,dy,dz - проекции вектора перемещения dr на оси x, y,z . При движении под действием силы тяжести

А= ± mgh .

Если точка опускается (независимо от вида траектории), т.е. z 2 < z 1 , работа силы тяжести положительна, если точка поднимается, работа силы тя-

жести отрицательна. Если точка перемещается горизонтально (z 2 = z 1 ) , работа силы тяжести равна 0.

3. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

Рассмотрим материальную точку M массой m , движущуюся под дей-

ствием сил

F 2 … F n (рис. 21) со скоростью υ

Модуль которой равен

υ = dS , где S - дуговая координата.

Проекция ускорения на касательную равна a τ =

Учитывая, что скорость υ

Сложная функция времени, т.е. υ = f (S (t )) ,

a τ = d υ

D υ

= υ d υ .

Основное уравнение динамики в проекции на касательную имеет вид

maτ = ∑ Fi τ

υd υ

= ∑ F i τ .

Умножим обе части уравнения на dS и проинтегрируем обе части равенства в пределах, соответствующих начальному и конечному положениям

точки M 1

и M 2

mυ dυ = dS∑ Fi τ

m ∫ υ d υ = ∑ ∫ F i τ dS , откуда

mυ 2

= ∑ A i .

mυ 2

Половина произведения массы материальной точки на квадрат скорости

называется кинетической энергией точки.

mυ 2 2

− кинетическая энергия точки после перемещения,

− кинетическая энергия точки до перемещения,

mυ 2

V i 2

Рассмотрим две произвольные точки твердого тела М 1 и М 2 , являющиеся частью механической системы. Проведем построения (см. рис.14.13).

Внутренние силы P J 1 , P J 2 , действующие со стороны одной точки на другую, на основании закона равенства действия и противодействия равны по модулю и противонапралены P J 1 = - P J 2 .

Пусть в данное мгновение скорости точек равны соответственно u 1 и u 2 и за промежуток времени приращения вдоль векторов составляют ds 1 = u 1 dt , ds 2 = u 2 dt .

Т.к., на основании 1-го следствия теоремы о скоростях точек плоской фигуры проекции векторов скоростей на направление отрезка М 1 М 2 равны, то и проекции элементарных перемещений этих точек будут равны.

Поэтому, вычисляя сумму элементарных работ 2-х внутренних сил на рассматриваемом перемещении и учитывая их равенство и противонаправленность получим

P J 1 ds 1 cos(P J 1 , u 1) + P J 2 ds 1 cos(P J 2 , u 2)= P J 1 * M 1 M’ 1 - P J 1 *M 2 M’ 2 = 0.

Поскольку каждой внутренней силе соответствует другая, равная по модулю и противонапраленная, то сумма элементарных работ всех внутренних сил равна нулю.

Конечное перемещение является совокупностью элементарных перемещений, а поэтому

А j = 0 ,

т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Поступательное движение твердого тела .

При поступательном движении твердого тела траектории всех его точек тождественны и параллельны. Поэтому векторы элементарных перемещений геометрически равны.

Элементарная работа силы P E i

d A E i = P E i dr.

Для всех сил будет

d A=Sd A E i = S P E i dr= dr S P E = dr R E .

Следовательно,

d A=dr R E . (14-46)

Элементарная работа сил, приложенных к твердому телу, движущемуся поступательно, равна элементарной работе главного вектора сил .

А= . (14-47)

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота .

Работа на конечном перемещении

SA i = , (14-48)

где - главный момент внешних сил относительно оси вращения.

Если главный момент постоянен, то

SA i = E z = E z (j 2 - j 1). (14-49)

В этом случае сумма работ на конечном перемещении равна произведению главного момента внешних сил на конечное изменение угла поворота тела.

Тогда мощность

N= =M E z dj/dt= M E z w. (14-50)

В общем случае движения элементарная работа внешних сил, приложенных к свободному твердому телу, равна

dA= SdA i = R E dr O + M E W da, (14-51)

где M E W - главный момент внешних сил относительно мгновенной оси; da - элементарный угол поворота относительно мгновенной оси.

14.10. Сопротивление при качении .

На цилиндрический каток, находящийся на горизонтальной плоскости в состоянии покоя (рис.14.14,а) действуют две взаимно уравновешивающиеся силы: вес катка G и нормальная реакция плоскости N = -G .

Если под действием горизонтальной силы Р , приложенной в центре катка С, он катится по плоскости без скольжения, то силы G , N образуют пару сил, препятствующую качению (рис. 14.14,б).

Возникновение этой пары сил обусловлено деформацией контактирующих поверхностей катка и плоскости. Линия действия реакции N оказывается сдвинутой на некоторое расстояние d от линии действия силы G.

Момент пары сил G , N называется моментом сопротивления качению. Его величина определяется произведением

М сопр = Nd . (14-52)

Коэффициент качения выражается в линейных единицах, т.е. [d]= см. Например, стальной бандаж по стальному рельсу d = 0,005 см.; дерево по стали d = 0,03- 0,04 см.

Определим наименьшую горизонтальную силу Р , приложенную к центру катка.

Чтобы каток начал катиться, момент пары сил, составленный силой Р и силой сцепления F сц, должен стать больше момента сопротивления, т.е.

PR> Nd .

Откуда P> Nd/R .

Т.к. здесь N=G, то

нальности (∂ f ∂ ϕ ) 2 . Отсюда видно, что коэффициент инерции объекта зави-

сит от выбора обобщенной координаты и может быть пересчитан.

КЭ нестационарной голономной одностепенной системы имеет струк-

туру квадратного полинома относительно обобщенной скорости q & , коэффи-

циенты которой в общем случае зависят от q и t :

2T = aq & 2 + 2a 1 q & + 2a 0 , при a = a (q ,t ), a 1 = a 1 (q ,t ), a 0 = a 0 (q ,t ) (5.10)

Размерность коэффициентов a , a 0 ,a 1 определяем по принципу Л.Эйлера: все слагаемые в выражениях должны иметь одинаковую размерность.

5.3. Мощность силы

Область пространства, в которой к материальному объекту приложена сила, называется векторным силовым полем . Эта область может быть трехмерной (например-шаровой), либо двумерной, либо представлять отрезок прямой или кривой линии. Обычно считают, что сила зависит только от координат (x , y , z ) точки приложения силы, либо - от одной или двух координат, либо – постоянная по модулю и направлению. Допускаются также случаи, когда силы зависят и от скорости точки и от времени, т.е. сила задана в области пространства координат, скоростей, времени. Встречаются случаи, ко-

гда сила зависит от ускорения.

в мгновение t в системе отсчета Oxyz называется

Мощностью силы F

скаляр, равный скалярному произведению силы

на скорость точки прило-

жения силы v в этой системе:

м/c=Вт)

Fv cos(F ,v )

Zz, (Н

Согласно данному определению мощность силы есть положительный скаляр, если угол между силой и скоростью острый (в этом случае сила способствует движению, нарастанию кинетической энергии) и отрицательна, если угол тупой.(когда сила замедляет движение). Мощность силы равна нулю, если сила перпендикулярна к скорости точки приложения силы, или в случае, если точка приложения силы не имеет скорости.

Мощности в двух системах отсчета различны в случае, если системы движутся одна относительно другой, поэтому следует указывать систему отсчета, в которой вычисляется мощность сил.

Мощность сил трения, также как и других диссипативных сил, направленных против движения, отрицательна.

Мощность силы сцепления колеса с дорогой (если нет проскальзывания колеса) равна нулю, поскольку точка приложения силы не имеет скорости.

Рассмотрим случай, когда силы зависят только от положения точки при-

U (x , y , z ) - функция положения точки приложения силы, т.е. – функция декартовых (или обобщенных) координат. В этом случае силу F (x , y , z ) называют потенциальной , а “силовую функцию” U с обратным знаком, называют

потенциальной энергией : П (x , y , z ) = − U (x , y , z ) . Область пространства, в ко-

торой на тело действует потенциальная сила, называется потенциальным силовым полем . Под знаком производной можно добовлять любую константу, поэтому силовая функция и потенциальная энергия определяется с точностью до константы, определяющей уровень отсчета. В общем случае, потенциальную энергию можно определить как функцию П (q 1 ,..., q n ) , получаемую

путем преобразования мощности к виду: P = − П & (q 1 ,..., q n ) , где q s – обобщен-

ные координаты.

Пусть тело произвольно движется в пространстве, т.е. оно перемещается вместе с полюсом O со скоростью v O и вращается с угловой скоростью ω .

Мощность пары сил, приложенной к твердому телу, не зависит от скорости полюса. Она равна скалярному произведению момента пары сил и угловой скорости.

P = M

M ω cos(M ,ω

) = M xω x + M yω y + M zω z ,

где M - момент пары сил, ω - угловая скорость твердого тела, которая, как известно, не зависит от выбора полюса. Мощность диссипативных пар сил отрицательна. Мощность пары сил не зависит от места приложения её к телу. Мощность пары сил трения в подшипнике отрицательная, поскольку момент трения и угловая скорость вращения противонаправлены.

Мощность системы сил, приложенных к твердому телу, равна скалярному произведению главного вектора R системы на скорость любого полюса тела, сложенному со скалярным произведением главного момента M 0 сил относительно этого полюса на угловую скорости тела:

v O + M

O ω

при R = ∑ F i , M O = ∑ r i × F i .

5.4. Работа и потенциальная энергия

Элементарной работой силы в выбранной системе координат Oxyz (неподвижной или подвижной) называется бесконечно малая величина, равная скалярному произведению силы на элементарное перемещение точки приложения силы в этой системе:

d ′ A = F

d r = Xdx + Ydy + Zdz = F | d r | cos(F ,d r ), (Н м=Дж)

Здесь через d ΄A обозначена бесконечно малая работа, совершаемая силой за бесконечно малый интервал времени, d r - элементарное перемещение, сонаправленное со скоростью точки. Штрихом отмечено, что d ΄A не всегда является полным дифференциалом от некоторой функции.

Очевидно, что произведение Pdt равно элементарной работе d ΄A :

Мощность, умноженная на малый интервал времени ∆t , есть приближенное значение работы ∆A силы за этот интервал, мощность приближенно равна работе силы за 1 сек. Работой силы за конечный интервал времени называется определенный интеграл от мощности по времени:

A12 = ∫ Pdt = ∫

v dt при v = r & = dr / dt .

Для расчета работы по данной общей формуле необходимо знать мощность как функцию времени или силу и скорость в виде функций только времени t . Но в некоторых частных случаях (случай потенциальной силы, случай постоянной силы трения при неизменном направлении движения) возможно вычисление работы без применения кинематических уравнений движения точки приложения силы, достаточно знать только начальное и конечное положение точки.

Рассмотрим движение точки приложения силы по отношению к двум системам отсчета, движущимся одна относительно другой. Скорость точки в двух системах различна, поэтому и мощность силы будет различной. Таким образом, понятия мощность, работа, формулируется по отношению к конкретной системе отсчета, преимущественно – по отношению к ИСО или ПСО (инерционной или поступательной системам отсчета).

Определение Сила F называется потенциальной , а ее силовое поле -

потенциальным силовым полем , если выполнены два условия:

1) Сила удовлетворяет одному из следующих условий: сила постоянна по величине и направлению F = const или зависит только от координат точки (всех трех или части) ее приложения, т.е. F = F (x , y , z ).

2) Элементарная работа d ′ A силы есть полный дифференциал от некоторой функции координат, либо мощность силы в любой момент времени равна полной производной по времени от некоторой функции Π (x , y , z )

Функция П(x ,y ,z ), получаемая посредством преобразования выражения элементарной работы, либо из выражения мощности, называется по-

тенциальной энергией потенциального силового поля в точке M(x, y, z).

Тем самым векторному силовому полю силы F (x , y , z ) сопоставляется

математически более простое поле скалярной функции трех переменных П(x , y , z ), либо - функции двух переменных П(x ,y ), либо - функции одной переменной П(x )

Потенциальная энергия может быть представлена не только в декартовой системе координат, но также - в цилиндрической, сферической системах координат, в общем она является функцией некоторых обобщенных коорди-

нат П(q 1 , q 2 , q 3 ).

Поверхности, определенные уравнением П(q 1 , q 2 , q 3 )=C, где C - произвольно назначаемый постоянный параметр, называются эквипотенциальными поверхностями .

Заметим, что под знаком дифференциала всегда можно прибавить или вычесть любую константу, так что функция П в формуле (5.18) определяется с точностью до константы. Константу произвольно назначают, например, полагают равной нулю, выбирая тем самым уровень отсчета семейства эквипотенциальных поверхностей.

Мощность потенциальной силы равна взятой со знаком минус произ-

водной по времени от потенциальной энергии P = −Π & . Подставим это выражение в определенный интеграл (5.17). Получим выражение работы потенциальной силы на конечном перемещении точки приложения силы, осуществленном за конечный промежуток времени:

A 12 = П(x 1 , y 1 , z 1 ) – П(x 2 , y 2 , z 2 ) = П1 – П2 .

Таким образом, работа потенциальной силы при ее перемещении за ин-

тервал из точки M 1 (x 1 , y 1 , z 1 ) в точку M 2 (x 2 , y 2 , z 2 ) по любой траектории равна убыли потенциальной энергии на этом перемещении, т.е. равна разно-

сти потенциальных энергий в первой и второй точках потенциального поля. Работа потенциальной силы не зависит от формы траектории, соединяющей две точки. В частности, работа потенциальной силы на любой замкнутой траектории равна нулю, а работа при переходе точки приложения силы с эквипотенциальной поверхности П=С1 на поверхность П=С2 равна разно-

сти констант: А12 =С1 -С2 .

Частный случай В качестве начальной точки M 1 (x 1 , y 1 , z 1 ) возьмем любую точку M (x , y , z ) потенциального поля, а в качестве M 2 (x 2 , y 2 , z 2 ) возьмем такую точку поля M (x O , y O , z O ), в которой потенциальная энергия принята равной

Получаем следующую физическую интерпретацию. Потенциальная энергия в любой точке M потенциального поля равна работе приложенной силы при перемещении ее точки приложения из положения M по любой гладкой или негладкой траектории в такое положение, в котором потенциальная энергия принята равной нулю, а также равна взятой со знаком минус работе силы на перемещении в положение M (x ,y ,z ) из “нулевого” положения, в котором потенциальная энергия принята равной нулю.

Пример 1 Найдем потенциальную энергию силы тяжести G = − Gk , про-

тивонаправленной с ортом k вертикальной оси Oz системы Oxyz . Методом элементарной работы получаем:

d ΄A = G x dx + G y dy + G z dz = –Gdz = – d (Gz ) => П = Gz .

Методом мощности получаем

P = G x x & +G y y & +G z z & = −Gz & = −(Gz ) Π = Gz .

Таким образом, потенциальная энергия силы тяжести равна произведению веса материальной точки на высоту расположения точки M над плоскостью Oxy , удовлетворяющей условию z = 0. Здесь плоскость Oxy назначена

нулевой эквопотенциальной плоскостью. Потенциальная энергия силы тяжести отрицательна в точках, расположенных под плоскостью Oxy , при z < 0. На любых горизонтальных плоскостях данная потенциальная энергия одинакова во всех точках, т.е. горизонтальные плоскости являются эквипотенциальными поверхностями. Работа силы тяжести на перемещении с плоскости уровня z = z 1 на плоскость z = z 2 определяется по формуле:

A 12 = П1 – П2 = G (z 1 – z 2 ) = ± Gh при h = |z 1 –z 2 |.

Эта работа пропорциональна разности (убыли) уровней, она отрицательна, если первый уровень ниже, чем второй.

Замечание . В случае если ось Oz направлена вниз, получаем формулу с обратным знаком: П = –Gz .

Пример 2 . Потенциальная энергии силы упругости пружины. Силовое поле горизонтальной пружины имеет вид горизонтальной оси Ox . Начало оси совместим со свободным концом недеформированной пружины, x - деформация растяжения пружины при x > 0, или сжатия пружины при x < 0. Упругая сила пружины F = − cxi , где i - орт оси x . Она всегда направлена противоположно деформации. Методом мощности находим потенциальную энергию силы упругости

P = Fx x = − c x x = − (c x

Π = cx

Вообразим, что пружина очень медленно растягивается внешней силой,

медленно нарастающей от нуля до значения F вн = cxi . Считаем, что в каждый момент времени упругая сила пружины уравновешивает внешнию силу.

Среднее значение величины силы F вн на интервале равно: F cр = cx / 2 .

Упругая сила пружины, совершая при этом отрицательную работу по сопротивлению растягиванию, запасает в пружине положительную потенциальную

энергию, равную Π = F x = cx 2 / 2.

Работа упругой силы на деформации

X 2 − x 1 равна A 12 = (x 2 2 – x 1 2 )c /2.

Очевидно, что A 12 < 0 при x1 < x2 и A 12 > 0 при x1 > x2

3 . Сила тяготения Земли

по закону "обратных квадратов":

F = γ m m / r2 ,

= − γ m m r / r 3 , где r - радиус-вектор материальной точки в

геоцентрической системе отсчета, γ = 6,672· 10–11 (м3 /(кг· с2 ) - постоянная тя-

готения, r / r = e - орт радиус-вектора тела (материальной точки), проведенного из центра Земли, m 1 = 6· 1024 (кг)- масса Земли, m - масса тела, γm 1 =

3986· 1011 (м3 /с2 ) - геоцентрическая гравитационная постоянная. Учитывая

тождества r r = r 2 ,

γ m1 m

γ m1 m

γ m1 m

γ m1 m

d A = −

r dr = −

dr = d (−

Π(r ) = −

Отметим, что П(r )→0 при r →∞, следовательно, потенциальная энергия

на бесконечности принята равной нулю.

"

Практическая работа на тему: «Работа и мощность при вращательном движении»

Цель работы: закрепить изучение материал по теме, научиться решать задачи.

Ход работы:

    Изучить материал по теме.

    Записать краткую теорию.

    Решить задачи.

    Оформить работу.

    Ответить на контрольные вопросы.

    Написать вывод.

Краткая теория:

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени
t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение
φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Вариант №1

    На двух шнурах одинаковой длины, равной 0,8 м, подвешены два свинцовых шара массами 0,5 и 1 кг. Шары соприкасается между собой. Шар меньшей массы отвели в сторону так, что шнур отклонился на угол α= 60°, и отпустили. На какую высоту поднимутся оба шара после столкновения? Удар считать центральным и неупругим. Определить энергию, израсходованную на деформацию шаров при ударе.

    Маховик массой 4 кг свободно вращается вокруг горизонтальной оси, проходящей через его центр, с частотой 720 мин-1. Массу маховика можно считать распределенной по его ободу радиусом 40 см. Через 30 с под действием тормозящего мо­мента маховик остановился. Найти тормозящий момент и число оборотов, которое делает маховик до полной остановки.

    Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновенную мощность на высоте h/2.

Вариант №2

    Маховик вращается по закону, выражаемому уравнением, где А = 2 рад, В = 32 рад/с, С = -4 рад/с2. Найти среднюю мощность N , развиваемую силами, действующими на маховик при его вращении, до остановки, если момент инерции I = 100 кг·м 2 .

    Тело массы m вращается на горизонтальной поверхности по окружности радиуса r=100мм. Найти работу силы трения при повороте тела на угол α=30. Коэффициент трения между телом и поверхностью равен k=0,2.

    Первый шар массой m1 = 2 кг движется со скоростью, величина которой v1 = 3 м/с. Второй шар массой m2 = 8 кг движется со скоростью, величина которой v2 = 1 м/с. Найти скорость v 1 первого шара и скорость v 2 второго шара сразу после удара, если: а) шары движутся навстречу друг другу; б) первый шар догоняет второй. Удар считать центральным и абсолютно упругим.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»