Паяльник с регулировкой температуры своими руками. Регулятор мощности для паяльника – разнообразие вариантов и схемы изготовления. Простейший вариант управления

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/


Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.


Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.


Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.


На картинке видно, что куда поступает и откуда выходит.


В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.



Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.


VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.



На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод - катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.


VS1 – КУ202Н



Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.



Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.


VD1... VD4 – 1N4007


Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.


Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».


Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.


Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.


Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.



Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

На 12 вольт/8 ватт, но вот цена была несколько необычной, всего 80 рублей против 120, как в прочих торговых точках. Всё собирался сделать что-то подобное сам, а тут случай лишил такой возможности. Продавец заверил, что исправный и даже проверил, подключив к блоку питания. Пришёл домой, стал пробовать его в деле. Стабилизированный ИПБ как раз на его напряжение. Вроде всё нормально, олово плавит, только чуть медленнее обычного. В конце концов, разобрался и почему цена занижена и почему в работе «заторможенный». Оказалось паяльнику для нормальной работы нужно не 12 вольт, а чуть больше. Вспомнил о сыре в мышеловке, хотя конечно здесь немного другой случай. Для полноценной эксплуатации паяльника решил собрать простейший регулятор напряжения и питать его от блока питания на 17 вольт.

Схема регулятора

Схема проста «до неприличия» (из-за чего даже подвергалась жёсткой критике на одном из родственных сайтов) и должна, да нет, просто обязана заработать.

Тем не менее, произвёл предварительную сборку. В течении часа всё было в полном объёме смонтировано на импровизированную монтажную плату. И компоненты и установочные. Сразу появилась возможность для полноценной работы паяльником.

Тестировать собранное устройство, для полного понимания полученного результата, привлёк вольтметр и амперметр. Наблюдение изменения конкретных величин тока и напряжения всегда поможет быть объективным к результату своих стараний.

Видео

Напряжение на выходе до 16 вольт, максимальное токопотребление до 500 мА. В результате проделанных манипуляций пришёл к выводу, что транзистор стоит поставить по-мощнее. Например КТ829А. Мало ли куда удумаю подключить готовый регулятор и что через него запитать. Стабилизированного напряжения на выходе данный регулятор не даёт, замечено некоторое увеличение, хоть и очень медленное. А так как производить пайку планирую по времени непродолжительно, то это не препятствие.

За неделю несколько раз попользовался временной сборкой, работа устроила. Пора придать устройство более-менее «человеческий» вид. Подсобрал комплектующие: корпус, для его устойчивости металлический ролик, держатель паяльника и соединительный винт.

Так как ролик решил использовать ещё и как дополнительный радиатор, то изолировал его от держателя паяльника при помощи пластмассовой шайбы.

После размещения основных компонентов установил на вход и выход гнёзда RGB (напряжение и ток не большие), это позволит избежать установки постоянных проводов (которые всегда вечно путаются). И пользоваться уже готовыми, полностью оборудованными. Со времён видеомагнитофонов их скопилось предостаточно.

Основных компонентов транзистор да два резистора, а проводов всё равно хватает.

Вот, что получилось. Светодиод не случайно подключён на выход регулятора - с изменением выходного напряжения изменяется яркость его свечения, причём весьма значительно. Оборудовать регулятор чем-то вроде шкалы не стал - на корпусе вокруг осталось вполне достаточное количество рисок от прежнего его предназначения. Вот так благодаря схеме, увиденной на форуме сайта, удалось решить вопрос питания низковольтного паяльника с нестандартным напряжением питания. Сборку произвёл Babay iz Barnaula .

Обсудить статью ПОДСТАВКА И РЕГУЛЯТОР МОЩНОСТИ НИЗКОВОЛЬТНОГО ПАЯЛЬНИКА

Типичной проблемой при работе с паяльником является обгорание жала. Связано это с его большим нагревом. Во время работы паяльные операции требуют неодинаковой мощности, поэтому приходится использовать паяльники с разной мощностью. Для защиты устройства от перегрева и скорости изменения мощности лучше всего применять паяльник с регулировкой температуры. Это позволит за считаные секунды изменить параметры работы и продлить срок эксплуатации устройства.

История происхождения

Паяльник - это инструмент, предназначенный для передачи тепла материалу при соприкосновении с ним. Прямое его назначение - создание неразъемного соединения посредством расплавления припоя.

До начала XX века существовали два типа паяльных приспособлений: газовый и медный. В 1921 году изобретатель из Германии Эрнст Сакс изобрёл и зарегистрировал патент на паяльник, нагрев которого происходил под действием электрического тока. В 1941 году Карл Уэллер запатентовал инструмент трансформаторного вида, напоминающего формой пистолет. Пропуская через свой наконечник ток, он быстро нагревался.

Через двадцать лет этот же изобретатель предложил использовать термоэлемент в паяльнике для контроля температуры нагрева. В конструкцию входили спрессованные друг с другом две металлические пластинки с разным тепловым расширением. С середины 60-х годов из-за развития полупроводниковых технологий паяльный инструмент стал выпускаться импульсного и индукционного типа работы.

Виды паяльников

Основное различие паяльных устройств заключается в их максимальной мощности, от которой зависит и температура нагрева. Кроме этого, электрические паяльники разделяются по значению питающего их напряжения. Они выпускаются как для сети переменного напряжения 220 вольт, так и постоянного его значения разной величины. Разделение паяльников происходит также по виду и принципу действия.

По принципу работы бывают:

  • нихромовые;
  • керамические;
  • импульсные;
  • индукционные;
  • термовоздушные;
  • инфракрасные;
  • газовые;
  • открытого типа.

По виду они бывают стержневые и молотковые. Первые предназначены для точечного нагрева, а вторые для прогрева определённой площади.

Принцип работы

Большинство приборов в основе работы используют преобразование электрической энергии в тепловую. Для этого во внутренней части устройства располагается нагревательный элемент. Но некоторые типы устройства просто нагреваются на огне или используют подожжённый направленный поток газа.

В нихромовых устройствах используется проволочная спираль, через которую пропускается ток. Спираль располагается на диэлектрике. Нагреваясь, спираль передаёт тепло медному жалу. Температура нагрева регулируется термодатчиком, который при достижении определённого значения нагрева отсоединяет спираль от электрической линии, а при остывании опять подключает её к ней. Термодатчиком является не что иное, как термопара.

В керамических паяльниках в качестве нагревателей используются стержни. Регулировка в них чаще всего осуществляется методом понижения величины напряжения подающегося на керамические стержни.

Индукционное оборудование работает за счёт индуктора. Жало покрывается ферромагнетиком. С помощью катушки наводится магнитное поле и появляются в проводнике токи, приводящие к нагреву жала. При работе наступает такой момент, что жало теряет свои магнитные свойства, нагрев останавливается, а при остывании свойства возвращаются и нагрев восстанавливается.

Работа импульсных паяльников основана на использовании высокочастотного трансформатора. Вторичная обмотка трансформатора имеет несколько витков, выполненных из толстого провода, концы которого и являются нагревателями. Частотный преобразователь увеличивает частоту входного сигнала, который снижается на трансформаторе. Регулировка нагрева происходит при помощи регулировки мощности.

Термовоздушный паяльник, или, как его называют, термофен, при работе использует горячий воздух, который нагревается при прохождении через спираль, выполненную из нихрома. Температуру в нём можно регулировать как снижением величины напряжения подаваемого на проволоку, так и изменением потока воздуха.

Одним из видов паяльников стали устройства, использующие инфракрасное излучение. В основе их работы лежит процесс нагрева излучением с длиной волны до 10 мкм. Для регулирования применяется сложный узел управления, изменяющий как длину волны, так и её интенсивность.

Газовые представляют собой обычные горелки, вместо жала использующие сопла разного диаметра. Управление температурой практически невозможно, кроме изменения интенсивности выхода газа с помощью заслонки.

Понимая принцип работы паяльника, можно не только осуществить его ремонт своими руками, но и доработать его конструкцию, например, сделать его регулируемым.

Устройства для регулировки

Цена паяльников с регулировкой температуры превышает цену обыкновенных устройств в несколько раз. Поэтому в некоторых случаях есть смысл купить хороший обыкновенный паяльник, а регулятор выполнить самому. Таким образом, управление паяльным оборудованием выполняется двумя способами контроля:

  • мощностью;
  • температурой.

Контроль температуры позволяет достичь более точных показателей, но реализовать проще управление мощностью. При этом регулятор можно выполнить независимым и подключать к нему различные приборы.

Универсальный стабилизатор

Паяльник с терморегулятором можно изготовить, используя заводского исполнения диммер или сконструировать по его аналогии самостоятельно. Диммер — это регулятор, с помощью которого изменяется мощность, подводимая к паяльнику. В сети 220 вольт протекает ток переменной величины с синусоидальной формой. Если этот сигнал обрезать, то на паяльник будет подаваться уже искажённая синусоида, а значит, изменится и величина мощности. Для этого перед нагрузкой в разрыв включается устройство, которое пропускает ток только в момент достижения сигналом определённой величины.

Диммеры различают по принципу действия. Они могут быть:

  • аналоговыми;
  • импульсными;
  • комбинированными.

Схема диммера реализуется с использованием различных радиокомпонентов : тиристоров, симисторов, специализированных микросхем. Самая несложная модель диммера выпускается с механической ручкой регулятора. Принцип действия модели основан на изменении сопротивления в цепи. По сути, это тот же самый реостат. Диммеры на симисторах обрезают передний фронт входного напряжения. Контроллеры используют в своей работе сложную электронную схему понижения напряжения.

Самостоятельно выполнить диммер проще, используя для этого тиристор. Для схемы не понадобятся дефицитные детали , и собирается она простым навесным монтажом.

Работа устройства основана на способности открывания тиристора в моменты времени при подаче сигнала на его управляющий вывод. Входной ток, поступая на конденсатор через цепочку резисторов, заряжает его. При этом динистор открывается и пропускает через себя кратковременно ток, поступающий на управление тиристора. Конденсатор разряжается и тиристор закрывается. При следующем цикле всё повторяется. Изменяя сопротивление цепи, регулируется длительность заряда конденсатора, а значит и время открытого состояния тиристора. Таким образом, устанавливается время, в течение которого паяльник подключается к сети 220 вольт.

Простой терморегулятор

Используя в качестве основы стабилитрон TL431, можно собрать простой терморегулятор своими руками. Такая схема состоит из недорогих радиокомпонентов и практически не нуждается в настройке.

Стабилитрон VD2 TL431 включён по схеме компаратора с одним входом. Величина требуемого напряжения определяется делителем, собранным на резисторах R1-R3. В качестве R3 используется термистор, свойство которого заключается в уменьшении сопротивления при нагреве. С помощью R1 устанавливается значение температуры, при котором устройство отключает паяльник от питания.

При достижении на стабилитроне значения сигнала, превышающего 2,5 вольта, он пробивается, и через него поступает питание на коммутационное реле K1. Реле подаёт сигнал на управляющий вывод симистора и паяльник включается. При нагреве сопротивление термодатчика R3 уменьшается. Напряжение на TL431 опускается ниже сравниваемого и цепь питания симистора разрывается.

Для паяльного инструмента мощностью до 200 Вт симистор можно использовать без радиатора. В качестве реле подойдёт РЭС55А с рабочим напряжением 12 вольт.

Повышение мощности

Случается так, что возникает потребность не только уменьшить мощность паяльного оборудования, но и наоборот, увеличить. Смысл идеи заключается в том, что можно использовать напряжение, возникающее на сетевом конденсаторе, значение которого составляет 310 вольт. Обусловлено это тем, что сетевое напряжение имеет амплитудное значение больше чем его эффективное в 1,41 раза. Из этого напряжения формируются импульсы прямоугольной амплитуды.

Меняя коэффициент заполнения, можно управлять эффективным значением импульсного сигнала от нуля до 1,41 от эффективного значения входного напряжения. Таким образом, мощность нагрева паяльника будет изменяться от нуля до удвоенной номинальной мощности.

Входная часть представляет собой стандартно собранный выпрямитель. Выходной блок выполнен на полевом транзисторе VT1 IRF840 и способен коммутировать паяльник с мощностью 65 Вт. Управление работой транзистора происходит микросхемой с широтно-импульсной модуляцией DD1. Конденсатор С2 стоит в корректирующей цепочке и задаёт частоту генерации. Питание микросхемы осуществляется на радиодеталях R5, VD4, C3. Диод VD5 используется для защиты транзистора.

Паяльная станция

Паяльная станция, это в принципе, тот же самый регулируемый паяльник. Её отличие от него в наличии удобной индикации и дополнительных приспособлениях, помогающих облегчить процесс пайки. Обычно к такому оборудованию подключается электрический паяльник и фен. Если есть опыт радиолюбителя, можно попробовать собрать схему паяльной станции своими руками. В её основе лежит микроконтроллер (МК) ATMEGA328.

Программируется такой МК на программаторе, для этого подойдёт Adruino или самодельное устройство. К микроконтроллеру подключается индикатор, в качестве которого используется жидкокристаллический дисплей LCD1602. Управление станцией простое, для этого используется переменное сопротивление на 10 кОм. Поворотом первого выставляется температура паяльника, второго - фена, а третьим можно уменьшить или увеличить поток воздуха фена.

Полевой транзистор, работающий в ключевом режиме, вместе с симистором устанавливается на радиатор через диэлектрическую прокладку. Светодиоды используются с малым потреблением тока, не более 20 мА. Паяльник и фен, подключаемые к станции, должны иметь встроенную термопару, сигнал с которой обрабатывается МК. Рекомендуемая мощность паяльника 40 Вт, а фена - не более 600 Вт.

Источник питания потребуется на 24 вольта с током не меньше двух ампер. Для питания можно задействовать готовый адаптер от моноблока или ноутбука. Кроме стабилизированного напряжения он содержит различного вида защиту. А можно выполнить и самостоятельно аналоговый типа. Для этого потребуется трансформатор со вторичной обмоткой, рассчитанной на 18–20 вольт, и выпрямительный мост с конденсатором.

После сборки схемы проводится её наладка. Все операции заключаются в подстройке температуры. В первую очередь выставляется температура на паяльнике. Например, на индикаторе выставляем 300 градусов. Затем, прижав термометр к жалу, с помощью регулируемого резистора, устанавливается температура, соответствующая реальным показаниям. Таким же образом калибруется и температура фена.

Все радиоэлементы удобно приобрести в китайских интернет-магазинах. Такое устройство без учёта самодельного корпуса обойдётся порядка ста долларов США со всеми принадлежностями. Прошивку для устройства можно скачать тут: http://x-shoker.ru/lay/pajalnaja_stancija.rar.

Конечно, собрать начинающему радиолюбителю цифровой регулятор температуры своими руками будет сложно. Поэтому можно приобрести готовые модули стабилизации температуры. Они представляют собой платы с распаянными разъёмами и радиодеталями. Понадобится только купить корпус или изготовить его самостоятельно.

Таким образом, используя стабилизатор нагрева паяльника, легко добиться его универсальности. При этом диапазон изменения температуры достигается в пределах от 0 до 140 процентов.


Старые паяльники, не оснащённые дополнительным функционалом, греют на полную, пока вилка в сети. А отключённые - быстро остывают. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали, поскольку припой плохо плавится, паяльник можно передержать впритык к деталям.

Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности паяльника, который ограничит напряжение и тем самым не даст жалу перегреваться.

Варианты монтажа регуляторов мощности паяльника

В зависимости от вида и набора радиодеталей, регуляторы мощности паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное - с цифровым индикатором и программным управлением.

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный - вилка. Для этого часто используют зарядное устройство смартфона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса.

Регулятор мощности своими руками в вилке


Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём. Такой регулятор мощности всегда находится вместе с паяльником - его нельзя забыть или потерять.

Другой вид корпуса для несложных регуляторов - розетка. Она может быть одинарной:


Регулятор мощности своими руками в одинарной розетке


или представлять собой тройник-удлинитель. В последнем очень удобно поставить ручку со шкалой.


Регулятор мощности в бытовом тройнике


Как видите, на месте одной и розеток стоит ручка переключателя со шкалой.

Вариантов монтажа регулятора с индикатором напряжения своими руками тоже немало. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант - удлинитель с вмонтированным туда индикатором, так и оригинальные решения.


Регулятор мощности в розетке с цифровым индикатором


Счетчик на корпусе дает точные цифры для работ, где важна строго определённая температура.


Регулятор мощности в корпусе обычной мыльницы


Плата здесь закреплена внутри винтами.

При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать - например, термоусадочной трубкой.

  • Смотрите также, как сделать

Варианты схем регулятора мощности паяльника

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали - приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.

Можно сделать простейший регулятор с диодом и выключателем - чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно - под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Необходимые элементы для монтажа регулятора мощности паяльника своими руками

Тиристор - своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода имеет 3 выхода - управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока. Тиристор, его главные составные части и отображение на схемах:


Тиристор


Симистор, или триак - вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе. Основные части, принцип действия и способ отображения на схемах. А1 и А2 - силовые электроды, G - управляющий затвор:


Симистор


В схему регулятора мощности для паяльника в зависимости от его возможностей также включают следующие радиодетали:

Резистор - служит для преобразования напряжения в силу тока и обратно.


Внешний вид резистора и способ отображения на схеме


Конденсатор - основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь по мере того, как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор.


Конденсатор


Диод - полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном.


Диод


Так диод обозначается на схемах:


Диод - обозначение


Стабилитрон - подвид диода, используется в устройствах для стабилизации напряжения.


Стабилитроны


Микроконтроллер - микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.


Микроконтроллер

  • Смотрите также схему

Схема регулятора мощности паяльника с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь - на паяльник подаётся всё напряжение, размыкает - напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым - такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.


Схема с выключателем и диодом


Необходимые детали и инструменты для регулятора мощности паяльника:
  • диод (1N4007);
  • выключатель с кнопкой;
  • кабель с вилкой (это может быть кабель паяльника или же удлинителя - если есть страх испортить паяльник);
  • провода;
  • флюс;
  • припой;
  • паяльник;
Сборка двухступенчатого регулятора на весу:
  1. Зачистить и залудить провода. Залудить диод.
  2. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку - кембрик.
  3. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
  4. Расположить диод внутри выключателя: минус диода - к вилке, плюс - к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва.
  6. Провода можно спаять. Подключить к клеммам, затянуть винты.
  7. Собрать выключатель.
Видео о том, как сделать регулятор мощности с выключателем и диодом - пошагово и наглядно:

Регулятор мощности на тиристоре своими руками

Тиристорный регулятор позволяет плавно устанавливать температуру паяльника от 50 до 100 %. Чтобы расширить эту шкалу (от нуля до 100 %), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе похожа. Метод можно применить для любого устройства такого типа.


Тиристорный регулятор


Мы предлагаем на выбор 2 схемы регулятора мощности. Первая - с маломощным тиристором:


Схема с маломощным тиристором и световым индикатором


Тиристор небольшой мощности - недорогой, занимает мало места. Его особенность в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт. Такой регулятор не требует дополнительного охлаждения.
Тиристор VS2 КУ101Е
Резистор R6 СП-04 / 47К
Резистор R4 СП-04 / 47К
Конденсатор С2 22 мф
Диод VD4 КД209
Диод VD5 КД209
Индикатор VD6 -

Вторая схема регулятора с мощным тиристором:


Регулятор на тиристоре КУ202Н


Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Необходимые компоненты для сборки своими руками:

Тиристор VS1 КУ202Н
Резистор R6 100 кОм
Резистор R1 3,3 кОм
Резистор R5 30 кОм
Резистор R3 2,2 кОм
Резистор R4 2,2 кОм
Резистор переменный R2 100 кОм
Конденсатор С1 0,1 мкФ
Транзистор VT1 КТ315Б
Транзистор VT2 КТ361Б
Стабилитрон VD1 Д814В
Диод выпрямительный VD2 1N4004 или КД105В

Сборка тиристорного (симисторного) регулятора мощности на печатной плате:

  1. Сделать монтажную схему - наметить удобное расположение всех деталей на плате. Если плата приобретается - монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь - сначала резисторы с конденсаторами, потом - диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор - подключить к лампе накаливания.
  9. Собрать устройство.
Следующие 2 видеоролика помогут подробнее разобраться в используемых деталях и особенностях монтажа регулятора мощности для паяльника своими руками:


Схема регулятора мощности паяльника с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100 %. В схеме использован минимум деталей. Справа на схеме - диаграмма преобразования напряжения:


Схема с тиристором и диодным мостом


Резистор R1 42 кОм
Резистор R2 2,4 кОм
Конденсатор C1 10 мк х 50 В
Диоды VD1-VD4 КД209
Тиристор VS1 КУ202Н

Регулятор мощности паяльника на симисторе

Симисторный регулятор по данной схеме собрать несложно, монтаж требует небольшого количества радиодеталей. Прибор позволяет регулировать мощность от нуля до 100 %. Конденсатор и резистор обеспечат чёткую работу симистора - он будет открываться даже при низкой мощности. В качестве индикатора используется светодиод.


Необходимые радиодетали для сборки своими руками:
Конденсатор C1 0,1 мкФ
Резистор R1 4,7 кОм
Резистор VR1 500 кОм
Динистор DIAC DB3
Симистор TRIAC BT136–600E
Диод D1 1N4148/16 B
Светодиод LED -

Сборка симисторного регулятора по приведённой схеме пошагово представлена в следующем видео:

Регулятор мощности на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.


Схема регулятора на симисторе с диодным мостом


Образец монтажа регулятора на симисторе с диодным мостом на печатную плату:


Регулятор на симисторе - вариант монтажа на плате


Регулятор с симистором - образец монтажа в корпус:


Регулятор с симистором и диодным мостом - образец

  • Возможно вам также пригодится схема

Регулятор мощности паяльника с симистором на микроконтроллере своими руками

Микроконтроллер позволяет точно установить и отобразить уровень мощности, обеспечить автоматическое отключение регулятора, если с ним долго не работают. Способ монтажа такого регулятора существенно не отличается от монтажа любого симисторного регулятора. Паяется на печатной плате, которая изготавливается предварительно. Такой регулятор может заменить паяльную станцию.

Резистор R1 22 кОм Резистор R2 22 кОм Резистор R3 1 кОм Резистор R4 1 кОм Резистор R5 100 Ом Резистор R6 47 Ом Резистор R7 1 МОм Резистор R8 430 кОм Резистор R9 75 Ом Симистор VS1 BT136–600E Стабилитрон VD2 1N4733A (5.1v) Диод VD1 1N4007 Микроконтроллер DD1 PIC 16F628 Индикатор HG1 АЛС333Б
  • Ещё одна принципиальная

Советы по проверке и наладке регулятора мощности для паяльника

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником, то есть под нагрузкой. Вращаем ручку резистора - напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка - подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора - взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя - сгорит индикатор.

Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность - 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.


Симистор с радиатором


Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены только самые простые из них, которые можно сделать своими руками.

Все, кто умеет пользоваться паяльником старается бороться с явлением перегрева жала и вследствие этого ухудшения качества пайки. Для борьбы с этим не очень приятным фактом предлагаю вам собрать одну из простых и надежных схем регулятора мощности паяльника своими руками.

Для ее изготовления вам понадобится проволочный переменный резистор типа СП5-30 либо аналогичный и жестяная коробка из-под кофе. Просверлив, по центру дна банки отверстие и устанавливаем там резистор, и осуществляем разводку

Данный и очень простой девайс повысит качество пайки а также сможет защитить жало паяльника от разрушения из-за перегрева.

Гениальное - просто. По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в "классической" схеме, заменить на трехпозиционный

Дежурный и максимальный нагрев паяльника дополнится оптимальным, соответствующим среднему положению переключателя. Нагрев резистора по сравнению с снизится, а надежность работы повысится.

Еще одна очень простая радиолюбительская разработка, но в отличии от первых двух с более высоким КПД

Резисторные и транзисторные регуляторы - неэкономичные. Повысить КПД можно так же, включением диода. При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе.

Напряжение с выпрямительных диодов поступает на параметрический стабилизатор напряжения, состоящий из сопротивления R1, стабилитрона VD5 и емкости С2. Созданное им девяти вольтовое напряжение используется для питания микросхемы счетчика К561ИЕ8.

Кроме того ранее выпрямленное напряжение, через емкость C1 в виде полупериода с частотой 100 Гц, проходит на вход 14 счетчика.

К561ИЕ8 это обычный десятичный счетчик, поэтому, с каждым импульсом на входе CN на выходах будет последовательно устанавливаться логическая единица. Если переключатель схемы переместим, на 10 выход, то с появлением каждого пятого импульса осуществится обнуление счетчика и счет начнется повторно, а на выводе 3 логическая единица установится только на время одного полупериода. Поэтому, транзистор и тиристор будут открываться только через четыре полупериода. Тумблером SA1 можно регулировать количество пропущенных полупериодов и мощность схемы.

Диодный мост используем в схеме такой мощности, чтобы она соответствовала мощности подключенной нагрузки. В качестве нагревательных приборов можно применить таких как электроплитка, ТЭН и т.п.

Схема очень простая, и состоит из двух частей: силовой и управляющей. К первой части относится тиристор VS1, с анода которого идет регулируемое напряжение на паяльник.

Схема управления, реализована на транзисторах VT1 и VT2, управляет работой ранее упомянутого тиристора. Она получает питание через параметрический стабилизатор, собранный на резисторе R5 и стабилитроне VD1. Стабилитрон предназначен для стабилизации и ограничения напряжения, питающего конструкцию. Сопротивление R5 гасит лишнее напряжение, а переменным сопротивлением R2 настраивается выходное напряжение.

В качестве корпуса конструкции, возьмем обычную розетку. Когда будете покупать, то выбирайте, чтобы она была сделана из пластмассы.

Этот регулятор управляет мощностью от ноля до максимума. HL1 (неоновая лампа МН3… МН13 и т.п) – линеаризует управление и одновременно выполняет функцию индикатора индикатором. Конденсатор С1 (емкостью 0,1 мкф)– генерирует пилообразный импульс и реализует функцию защиты цепи управления от помех. Сопротивление R1 (220 кОм) – регулятор мощности. Резистор R2 (1 кОм) – ограничивает ток протекающий через анод - катод VS1 и R1. R3 (300 Ом) – ограничивает ток через неонку HL1 () и управляющий электрод симистора.

Регулятор собран в корпусе от блока питания советского калькулятора. Симистор и потенциометр закреплены на стальном уголке, толщиной 0,5мм. Уголок привинчен к корпусу двумя винтами М2,5 с применением изолирующих шайб. Сопротивления R2, R3 и неонка HL1 помещены в изолирующую трубку (кембрик) и закреплены с помощью навесного монтажа.

T1: BT139 симистор, T2: BC547 транзистор, D1: DB3 динистор, D2 и D3: 1N4007 диод, C1: 47nF/400V, C2:220uF/25 В, R1 и R3: 470K, R2: 2K6, R4: 100R, P1: 2M2, Светодиод 5 мм красный.


Симистор BT139 применяется для регулировки фазы «резистивной» нагрузки нагревательного элемента паяльника. Красный светодиод является визуальным индикатором активности работы конструкции.

Основа схемы МК PIC16F628A, который и осуществляет ШИМ регулирование подводимой к главному инструменту радиолюбителя потребляемой мощности.


Если ваш паяльник большой мощностью от 40 ватт, то при пайке небольших радиоэлементов, особенно smd компонентов трудно подобрать момент времени, когда пайка будет оптимальной. А паять им smd мелочевку просто не возможно. Чтобы не тратить деньги на покупку паяльной станции, особенно если она вам нужна не часто. Предлагаю собрать к вашему главному радиолюбительскому инструменту эту приставку.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»