Электрические схемы бесплатно. Схемы зарядных устройств для малогабаритных аккумуляторов. Малогабаритное зарядное устройство для автомобильных аккумуляторов Схемы зарядки для малогабаритных аккумуляторов

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
, из МП-3 плеера, фотоаппарата, а зарядного устройства для него нет. Особенно часто такая ситуация возникает при ремонте различной РЭА. Поэтому настоятельно рекомендуется сделать небольшое универсальное зарядное устройство с возможностью регулировок его параметров, чтобы можно было заряжать практически любые (никель-кадмиевые, свинцовые, литиевые и т.д.) аккумуляторы с рабочим напряжением от 1,5 до 12 В и ёмкостью до 10 А/ч. При этом важно, чтоб зарядное устройство не допускало перезаряда и сигнализировало об окончании процесса зарядки. В результат экспериментов получилась такая несложная схема, доступная для повторения даже начинающими радиолюбителями:

Диодный мост выдерживающий ток более ампера. Конденсатор фильтра электролитический на емкость от 470 мкФ, и напряжением 25-50В. Трансформатор можно взять с мощностью 20-40 ватт и имеющим нужное нам напряжение на вторичной обмотке. Ток зарядки аккумулятора устанавливаем согласно формулы:

I = (0,5 … 0,7) / R2

Резистор R2 желательно ставить переменный (для возможности регулировки максимального начального тока заряда). Стабилизатор КРЕН12А (LM317) позволяет регулировать выходное напряжение зарядки в широких пределах (от 1,5 до 35 В).

По мере напряжение на нем будет приближаться к напряжению стабилизатора и, соответственно, ток через транзистор (нижний по схеме) станет понижаться. Это приведет к его постепенному закрыванию, а светодиод плавно погаснет. Для контроля процесса зарядки, удобно использовать на выходе стрелочный индикатор. Хорошо подходят для этого индикаторы уровня записи старых магнитофонов.

Зарядка настроек не требует и при правильной сборке начинает работать сразу. При подключении к клеммам разряженного аккумулятора загорается светодиод и стрелка прибора отклоняется к концу шкалы, в зависимости от типа аккумулятора. С помощью переменного резистора R3 выставляем максимальный ток зарядки. По мере зарядки яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. При полной зарядке, когда напряжения на аккумуляторе и выходе зарядного устройства сравняются, ток через аккумулятор станет нулевым. Это исключит всякий риск перезарядить аккумулятор.

Вместо переменного резистора R4 удобнее использовать переключатель с набором заранее подобранных сопротивлений. Тогда нужно будет лишь установить переключателем нужное нам напряжение заряда.


Подбирая сопротивления нижнего ряда резисторов, мы выставляем на выходе нужное нам напряжение. Таким способом легко подобрать любое напряжение. Зарядное устройство собрано на небольшой плате, размерами 2,5 х 3 см.

В настоящее время широко применяются устройства, для автоматической зарядки с аккумуляторов напряжением 6 и 12 В. Опыт эксплуатации аккумуляторов показываете т целесообразность раздельной и независимой зарядки аккумуляторных элементов с напряжением 1.25 В каждый. Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время. Индивидуальная зарядка позволяет наиболее полно восстановить ёмкость каждого аккумулятора. Только за счёт индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50... 100%. Приводиться схема доработанного зарядного устройства. Другое отличие от аналогичных схем использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить света диоды индикации режима непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом естественно, ток заряда, аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы на аналогичную или подбор не приводят к устранению этого явления. Задачу удалось решить, изменив схему включения светодиода, ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного: компаратора LT339 применено менее дефицитная и белее дешевая микросхема сдвоенного компаратора LTЗ93. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2. Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше чем опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается VТ1 (VT2). Зажигается светодиод VD7 (VD15) зелёного цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивают работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумулятора ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1(VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях электропитания. Как только аккумулятор зарядиться, возрастёт напряжение на инвертирующем входе компаратора, и он переключиться. Зелёный светодиод гаснет, а красный светодиод VD11(VD13) зажигается. Это происходит из-за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания. Поскольку микросхемы компараторов маломощные, из-за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений гистерезис уменьшается. В режиме заряде аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9,VD12 шунтируют светодиоды VD11,VD13, и они не светятся. Как только аккумулятор зарядиться и компаратор перейдёт в другое устойчивое состояние, напряжение на выходе компараторе скачком возрастает, красный светодиод уже не шунтируется и начинает светиться. Настройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зелёный загорится. Подбирая сопротивление резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 ёмкости аккумулятора. Ток, для аккумуляторов ёмкостью 0,6 Ач был установлен около 60 мА. В качестве R3 целесообразно использовать многооборотный подстроечный резистор типа С15-2. Его сопротивление не критично. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы.

Радиоаматор №1 2006г стр. 25

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о зарядно-балансировочном устройстве EV-Peak E3, позволяющим заряжать аккумуляторные сборки (2S-4S) на основе лития (Li-Ion / Li-Pol) в режиме балансировки током 3А. Данный прибор представляет огромный интерес, в первую очередь, для людей, увлекающихся РУ техникой и имеющих большой парк различных модельных аккумуляторов, а также для переделки электроинструмента на литий. Зарядное устройство имеет некоторые особенности, поэтому кому интересно, как устройство показало себя в работе, милости прошу под кат.

Общий вид зарядно-балансировочного устройства EV-Peak E3:


Данный зарядник покупался с конкретной целью – быстрая зарядка переделанной на литий 4S батареи шуруповерта. На момент покупки он стоил $14,99, чего-то аналогичного по функционалу (заряд 4S через балансировочный выход) за эти деньги просто нет:


Краткие ТТХ:
- Производитель – EV-Peak
- Модель – e3
- Корпус – пластик
- Напряжение питания – 100-240V
- Зарядная мощность – 30W
- Зарядный ток – 3А (фиксирован, постепенно снижается)
- Ток балансировки – 400ma
- Типы поддерживаемых аккумуляторов – литиевые (Li-Ion / Li-Pol) 2S-4S
- Размеры – 116мм*72мм*40мм
- Вес – 170гр

Комплектация:
- зарядное устройство EV-Peak E3
- сетевой шнур с евровилкой длиной 1м
- инструкция


Зарядное устройство EV-Peak E3 поставляется в компактной коробочке темного цвета из плотного гофрокартона, на которой присутствует логотип компании и наименование модели:


С торца коробки указаны основные спецификации устройства и тип вилки питания:


Для подключения к питающей сети служит сетевой шнур с евровилкой длиной около 1м:


В комплекте имеется краткое руководство по эксплуатации на английском языке:


Итого, комплектация хорошая, все доступно для работы «из коробки».

Габариты:

Зарядное устройство EV-Peak E3 очень компактное. Его размеры всего 116мм*72мм*40мм. Вот сравнение с аналогом в лице SkyRC e450:


Ну и по традиции, сравнение с тысячной банкнотой и коробком спичек:


Вес зарядного устройства небольшой – около 185гр:


Внешний вид:

EV-Peak E3 представляет собой зарядно-балансировочное устройство, способное заряжать аккумуляторные сборки (2S-4S) на основе лития (Li-Ion / Li-Pol) током 3А. Ток балансировки при этом – около 400ma. В отличие от SkyRC e450, в зарядном устройстве EV-Peak E3 отсутствует возможность заряда высоковольтовых литиевых аккумуляторов (HV 4,35V), литий-фосфатных (Li-Fe), а также с некоторой натяжкой аккумуляторов на основе никеля (NiCd/NiMH). К тому же, отсутствует возможность выбора зарядного тока, что является одним из главных минусов устройства. Другими словами, ЗУ EV-Peak E3 идеально подойдет для быстрой зарядки емких аккумуляторных сборок от радиоуправляемых моделей или электроинструмента.
Зарядное устройство EV-Peak E3 выполнено в черном пластиковом корпусе с множеством вентиляционных отверстий по бокам и включает в себя как схему управления зарядом, так и блок питания:


Основной концепцией компании является простота и надежность. В связи с этим, ЗУ EV-Peak E3 лишено каких-либо кнопок управления, а пользователю доступны лишь гнездо для подключения сетевого шнура и гнёзда для подключения аккумуляторных сборок. Расположены они по разным торцам устройства:


С противоположного торца присутствуют три гнезда для подключения трех видов аккумуляторных сборок (слева внизу – 2S, справа внизу - 3S, сверху - 4S):


На нижней стороне корпуса присутствует наклейка с указанием основных характеристик устройства, а также четыре пластиковые ножки:


Для индикации процесса (уровня) заряда предназначены 4 светодиодных индикатора:


После подключения аккумулятора, заряд начинается не сразу. В режиме ожидания поочередно мигают два индикатора, а при подключении аккумуляторной сборки сначала происходит проверка правильности подключения, а лишь затем начинается заряд.

Управление и индикация работы:

По управлению все банально и просто:
1) сначала подключаем зарядное устройство к сети. При этом должны поочередно мигать два индикатора
2) далее подключаем балансировочный разъем аккумулятора в соответствующее гнездо. Левый нижний разъем – для 2S, правый нижний – для 3S, верхний - для 4S сборок (двух/трех/четырехбаночные сборки аккумуляторов)
3) электроника проверяет правильность подключения и начинает заряд

Основное отличие зарядного устройства EV-Peak E3 от аналогичного SkyRC e450 в том, что нет необходимости подключать силовой разъем к устройству, поскольку питание подается сразу же на крайние балансировочные выводы:


Хотелось бы также заметить, что данное устройство кардинально отличается от SkyRC e3 и его многочисленных копий:


В тех устройствах установлены три независимых линейных контроллера (TP4056 или аналоги), заряжающие каждый свою банку током 0,8-1А. Балансировка, как таковая, там отсутствует и заряд начинается сразу же после подключения. Соответствие конечных напряжений на ячейках оставляет желать лучшего, впрочем, как и зарядный ток. В свою очередь, зарядное устройство EV-Peak E3 построено на несколько иной схемотехнике и «подгоняет» напряжение на всех ячейках к одному значению (4,2V на каждую банку).

Индикация заряда:
- мигает первый индикатор – уровень заряда батареи менее 25%
- горит первый и мигает второй индикатор - уровень заряда батареи от 25% до 50%
- горят первый, второй и мигает третий индикатор - уровень заряда батареи от 50% до 75%
- горят все три и мигает четвертый индикатор - уровень заряда батареи от 75% до 99% (балансировка)
- все четыре индикатора горят – батарея полностью заряжена

Разборка устройства:

Разобрать зарядное устройство EV-Peak E3 достаточно просто. Для этого необходимо выкрутить четыре винта на нижней стороне корпуса:


К качеству монтажа нареканий практически нет - пайка ровная, но в некоторых местах флюс до конца не смыт:


Микросхемы на оборотной стороне платы более крупно:


По схемотехнике входной фильтрующей части блока питания нареканий практически нет: присутствует плавкий предохранитель, фильтрующий конденсатор Х-типа (фильтрация от помех самого БП), кондер 68mkF*400V, двухобмоточный дроссель и конденсаторы Y-типа для снижения импульсных помех (синие):


Не хватает, правда, терморезистора для ограничения пускового тока и варистора для защиты от бросков сетевого напряжения. Силовые мосфеты и диоды прижаты к плоскому алюминиевому радиатору (пластине) через термопасту:


К сожалению, удалось прочитать только слева маркировку сдвоенных диодов Шоттки (MBRF20100CT), рассчитанные на 100V/20A.
Ревизия платы V1.4:


Многим покажется сходство 8-миногих мосфетов с «народными» линейными контроллерами заряда, но это не так. На плате присутствуют четыре мосфета AO4407A (один на оборотной стороне платы), рассчитанные на 30V/12A и четыре резисторных шунта:


Вцелом, исполнение хорошее, некоторые элементы взяты с запасом и дополнительно зафиксированы герметиком. На верхней крышке корпуса присутствует вырезанное окно, закрытое наклейкой:


Подозреваю, что в ассортименте компании есть похожие модели в подобном корпусе, но уже с кнопкой управления или кнопкой выбора тока заряда.

Тестирование зарядного устройства EV-Peak E3:

Прежде чем начать тестирование, немного расскажу о балансировке. Она предназначена для выравнивания напряжения на ячейках/банках аккумуляторной сборки, соединенных последовательно две или более (2S-4S). Как известно, аккумуляторов с абсолютно одинаковыми параметрами не бывает, поэтому один разряжается чуть быстрее, другой – чуть медленнее остальных. Следовательно, и при заряде один зарядится чуть быстрее, другой – чуть медленнее. Хотелось бы отметить важную особенность данной модели, а именно наличие «правильной» балансировки.
Для тестирования соберем простенький стенд из холдера/держателя на три аккумулятора, трех вольтметров и одного ампервольтметра:


Как видим, аккумуляторы практически полностью высажены, кроме среднего (10-15% емкости у крайних, около 25% у среднего). На лицо достаточно большая разбалансировка. При подключении аккумуляторной сборки к зарядному устройству, после проверки начинается заряд. Как и в случае с ЗУ SkyRC e450, зарядное устройство EV-Peak E3 чуть занижает зарядный ток (около 2,75А), хотя все в пределах нормы (10%):


Ранее я уже сравнивал показания приборов и DIY вольтметров/амперметров. Как пример, фото замера проходящего тока токовыми клещами UNI-T UT204A из предыдущего обзора:


Показания аналогичны, что и при замерах с True RMS мультиметром UNI-T UT61E.
Через 30-40 минут, зарядный ток начинает плавно снижаться:


Я не думаю, что кому-то будет интересен весь процесс заряда поэтапно, поэтому приведу лишь некоторые выборки:


ЗУ EV-Peak E3 заряжает литиевые аккумуляторы по алгоритму CC/CV, метод балансировки - CV phase, т.е. балансир не активен до тех пор, пока какая-либо банка (ячейка) не перейдет в режим CV. При достижении на какой-либо банке напряжения 4,16-4,17V балансир активируется и грубо говоря, временно отключает данную банку, перенаправляя энергию заряда на оставшиеся банки. Поскольку балансировочный ток всего около 400ma, то процесс выравнивания напряжения при сильном дисбалансе не слишком быстрый. При небольшом разбросе напряжения на банках, балансировка занимает около 10минут, не более.
В итоге, за минуту до окончания заряда имеем следующие показатели:


После отключения имеем следующую картину:


В принципе, хорошо. Хотелось бы видеть точное побаночное напряжение 4,2V, но возможно все дело в плохособранном стенде, ибо все сделано на «соплях».
Небольшой видеоролик окончания заряда:


Ну и для примера, реальный пример заряда 2S аккумулятора, емкостью 1200mah:


Зарядный ток около 2,8А, течет от плюса к минусу последовательно через все банки:


На среднем балансировочном проводе тока нет, что еще раз подтверждает отличную от бюджетных зарядников схемотехнику (тех, которые на TP4056 и аналогах):


На минусовом проводе аналогичный ток:


Более подробно смотрите в небольшом видеоролике:


Особенности данной модели:

Несмотря на все плюсы, зарядное устройство имеет и некоторые особенности, отчего сфера применения зарядника несколько сужается:
- нельзя снизить зарядный ток. Для компактных РУ моделей с небольшими аккумуляторами (2S 500-750mah) ток заряда в 3А чрезмерно высок и может привести к возгоранию
- нельзя заряжать одиночные аккумуляторы (1S). С другой стороны, ток в 3А несколько великоват для большинства моделей аккумуляторов на 2600-3500mah, поэтому за минус можно не считать.
- зарядное устройство не имеет режима «разряда» или «хранения». Модельные «липольки» не рекомендуется хранить полностью заряженными, поэтому по окончании сезона их лучше разрядить до определенного значения
- зарядное устройство очень просто в использовании и отлично подойдет для зарядки емких батарей от РУ моделей или электроинструмента
- зарядное устройство не имеет дополнительного гнезда для питания от бортового аккумулятора автомобиля или автоприкуривателя, как более «продвинутые» собратья, поэтому о зарядке модельных аккумуляторов в полевых условиях можно забыть, либо приобретать отдельно автомобильный инвертор 12V -> 220V

Плюсы:
+ качество изготовления
+ высокий ток заряда (3А)
+ хорошая балансировка (400ma)
+ встроенный БП
+ простота управления и использования

Минусы:
- зарядный ток несколько занижен (максимум 2,8А)
- отсутствует возможность выбора зарядного тока (только 3А с постепенным снижением)

Вывод: данное зарядное устройство покупалось с конкретной целью – быстрая зарядка переделанной на литий батареи шуруповерта. Свои функции выполняет отлично, нареканий нет, поэтому могу смело рекомендовать, кого не смущают ее особенности…

Планирую купить +12 Добавить в избранное Обзор понравился +36 +51

Андрей Барышев, г. Выборг

В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости С А, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 - 0.3)С А.

В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

Принципиальная схема ЗУ приведена на рис. 1.

Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме - не ниже 36 В. Диоды выпрямительного моста - любые выпрямительные на ток от 0.5 А (КД226, и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 - средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа ). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 - регулируемый стабилизатор напряжения или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах - от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В - 2.4 В - 3.6 В - 3.9 В - 9 В - 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

ЗУ можно собрать в небольшом корпусе подходящих размеров, например - от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 - 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор - микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам - переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт - сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать - нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора - когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго - перезаряда его не произойдет.

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо

Универсальное зарядное устройство для малогабаритных аккумуляторов


С помощью предлагаемого зарядного устройства (ЗУ) можно восстанавливать работоспособность практически всех типов используемых в быту малогабаритных аккумуляторов с номинальным напряжением 1,5 В (например, СЦ-21, СЦ-31, СЦ-32Д-0,26С, Д-0,06, Д-0,06Д, Д-0,1, Д-0,115, Д-0.26Д, Д-0,55С, КНГ-0.35Д, КНГЦ-1Д. ЦНК-0,2, 2Д-0,25, ШКНГ-1Д и т. д.). В ЗУ предусмотрено автоматическое отключение от сети при истекании установленного времени зарядки и при превышении допустимого значения напряжения на аккумуляторе. В ЗУ также предусмотрена индикация значения зарядного тока.

Электронная схема универсального ЗУ приведена на рис. 1; она состоит из пяти различных функциональных узлов:

  • источника постоянного тока;
  • схемы установки продолжительности времени зарядки;
  • схемы для автоматического включения и выключения ЗУ от сети;
  • схемы индикации значения зарядного тока;
  • источника питания.
Источник постоянного тока, выполненный по схеме токового зеркала Уилсона , состоит из транзисторов VT1 VT3 и резисторов Rl — R5. Согласованная пара транзисторов VT1, VT3 тина КТ814 со стороны коллекторов (задняя часть транзистора) с изолирующей прокладкой, прикрепляется друг к другу для поддержания одинакового теплового режима при работе ЗУ.



Рис. 1. Принципиальная схема

Зарядку аккумуляторов можно производить с помощью пяти различных значений зарядного тока: 6, 12, 26, 55 и 100 мА. Ток зарядки выбирается с помощью переключателей SA2—SA5, соответственно подключая одну из групп резисторов Rl — R4 параллельно к R5. Например, при зарядке аккумуляторов СЦ-21, СЦ-31, СЦ-32 для современных электронных наручных часов используется зарядный ток 6 или 12 мА . При зарядке током 6 мА переключатели SA2 -SA5 остаются в положении, показанном на схеме. При зарядном токе 12 мА к резистору R5 с помощью переключателя SA2 параллельно присоединяется резистор R4. а при токе 26 мА к резистору R5 с помощью SA3 параллельно присоединяется резистор R3 и т. д.

Работоспособность аккумуляторов для электронных наручных часов восстанавливается примерно через 1...3 ч после подключения к устройству, при этом, если напряжение на аккумуляторе достигает 2,2...2,3 В, ЗУ автоматически отключается от сети.

Схема для автоматического включения и выключения ЗУ от сети выполнена на транзисторе VT4, диоде VD3, электронном реле K1 и на резисторах R6, R7. Пороговое напряжение 2,2...2,3 В устанавливается с помощью переменного резистора R7. Напряжение на аккумуляторе через диод VD1 и резистор R7 поступает к базе транзистора VT4. Когда напряжение достигает уровня 2,2...2,3 В, транзистор открывается и напряжение на реле К1 уменьшается, контакт К отключает ЗУ от сети. Для включения ЗУ достаточно кратковременного нажатия на SA1. После кратковременного включения SA1 срабатывает реле К1, его контакты К блокируют контакты SA1 и ЗУ подключается к сети.

Схема установки времени зарядки выполнена на микросхемах DD4 К155ЛАЗ, DD2, DD3 К155ИЕ8, DD1 К155ИЕ2. На логических элементах DD4.1, DD4.2, резисторах R9, R10 и на конденсаторе С2 построен генератор низкой частоты. С помощью микросхем К155ИЕ8 выполнены два счетчика делителя входной частоты с коэффициентом деления 64, а на микросхеме К155ИЕ2 - счетчик-делитель с коэффициентом деления 10 . Частоту генератора можно изменить с помощью переменного резистора R10. Меняя частоту генератора, можно регулировать продолжительность зарядки от 2 до 20 ч. Однако, учитывая то, что время продолжительности зарядки почти для всех типов малогабаритных аккумуляторов равно 15 ч, целесообразно жестко устанавливать время зарядки 15 ч. Выходной сигнал, предупреждающий об окончании времени зарядки, — уровень логической 1 через диод VD2 и резистор R7 прикладывается к базе транзистора VT4. Последний, открываясь через контакты реле К1, отключает ЗУ от сети.

Схема индикации значения зарядного тока выполнена с помощью ППЗУ К155РЕЗ, цифровых полупроводниковых индикаторов HL1, HL2 АЛС324Б и резисторов Rll—R19. При этом необходимо в ППЗУ К155РЕЗ предварительно записать программу, приведенную в табл. 1.



На цифровых полупроводниковых индикаторах выводится одно из пяти различных значений зарядного тока, с помощью которого в этот момент производится зарядка аккумулятора. Надо отметить, что при зарядке током 100 мА, так как оно является трехзначным числом, на индикаторах HL1, HL2 высвечивается число 98.

Ввиду того что вход Е (вывод 15) ППЗУ через элемент DD4.3 подключен к генератору низкой частоты, то на индикаторах цифровая информация мигает с частотой генератора. Такой способ индикации значения зарядного тока, во-первых, уменьшает потребляемый ток схемы индикации. Во-вторых, с помощью частоты мигания можно примерно оценить предварительно установленное время зарядки.

Учитывая относительную сложность схемы индикации для радиолюбителей, ее можно исключить из ЗУ. Тогда из схемы исключают микросхему DD5, цифровые полупроводниковые индикаторы HL1, HL2, резисторы Rll — R19 и вторую группу контактов переключателей SA2 — SA5. А при использовании схемы индикации предварительную программу в ППЗУ К155РЕЗ можно записать устройством, описанным в .

Источник питания выполнен по известной схеме на микросхеме DA1 KP142EH5B. Саму микросхему с помощью клея «Момент» или другим способом закрепляют к корпусу трансформатора. В этом случае нет необходимости использовать отдельный теплоотвод для микросхемы DA1.

Детали устройства смонтированы на печатной плате, которая помещена в корпус из полистирола. Сетевая вилка ХР1 укреплена на корпусе. Контакты для подключения дисковых аккумуляторов изготовлены из хозяйственной пластмассовой прищепки (рис. 2).



При правильном монтаже элементов схемы устройство работает сразу. Работу генератора импульсов проверяют с помощью светодиода, показанного пунктирными линиями на рис. 1. Затем для установки времени восстановления, равного 15 ч, с помощью резистора R1 выбирается такая частота следования импульсов, при которой на выходе микросхемы DD3 (на выводе 7) появляется отрицательный импульс через 1,5 мин. Это можно контролировать с помощью светодиода. Показанный пунктирными линиями светодиод отключается от выхода генератора и подключается в период установки времени к выводу 7 микросхемы DD3.

Ток, потребляемый ЗУ, не превышает 350 мА. Для уменьшения мощности вместо микросхем серии К155 можно использовать микросхемы серии К555.

ЛИТЕРАТУРА
1. Xоровиц П., Хилл У. Искусство схемотехники.— М.: Мир, 1989, т. 1.
2. Бондарев В., Руковишников А. Зарядное устройство для малогабаритных элементов.— Радио, 1989, № 3. с. 69.
3. Пузаков А. ПЗУ в спортивной литературе.- Радио, 1982. № 1. с. 22—23.
4. Горошков Б. И. Элементы радиоэлектронных устройств. - М. Радио и связь, 1988.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»