Как подобрать стабилитрон по напряжению. Параметрические стабилизаторы напряжения. В качестве примера положим

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего - либо или в чем - либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

"Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки..."

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон - это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое - же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока , и пропускает напряжение в прямом направлении анод - катод так же - как и диод . В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод - анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры - это напряжение стабилизации и ток. Параметр напряжение - указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток - задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.


В таблице указаны основные параметры - это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники .

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.


Возьмем стабилитрон параметром - напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например - если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так - же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор. Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам:).


Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.


Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз - “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.

Пример - схема регулируемого стабилизатора (блока питания).


В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода , если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.

Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации

К ст U = (ΔU вх /U вх) / (ΔU вых /U вых).

Простейшим стабилизатором напряжения является параметрический, схема которого представлена на рис. 1.6.

Рис. 1.6. Параметрический стабилизатор напряжения без термокомпенсации

Расчет параметрического стабилизатора обычно сводится к расчету сопротивления балластного резистора R о и выбору типа стабилитрона.

Основными электрическими параметрами стабилитрона являются:

U ст – напряжение стабилизации;

I ст.макс – максимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

I ст.мин – минимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

R д – дифференциальное сопротивление на рабочем участке вольт-амперной

характеристики.

Методику расчета рассмотрим на примере.

Дано: U вых = 9 В;I н = 10 мА;ΔI н = ± 2 мА;ΔU вх = ± 10%U вх. .

Порядок расчета.

1. По справочнику выбираем стабилитрон типа Д814Б с параметрами

U ст = 9 В;I ст.макс = 36 мА;I ст.мин = 3 мА;R д = 10 Ом.

2. Рассчитаем необходимое входное напряжение по формуле

U вх =n ст U вых,

где n ст – коэффициент передачи стабилизатора.

Для оптимальных условий работы стабилизатора рекомендуется выбирать n ст в пределах от 1,4 до 2.

Примем n ст = 1,6 , тогдаU вх = 1,6 · 9 = 14,4 В.

3. Рассчитаем сопротивление балластного резистора R о

R о = (U вх –U вых) / (I ст +I н).

Ток I ст выбирают из следующих соображений:I ст ≥I н.

При одновременном изменении U вх на величинуΔU вх иI н на величинуΔI н ток стабилитрона не должен выходить за пределыI ст.макс иI ст.мин.

По этой причине обычно выбирают I ст из середины диапазона допустимых значений.

Принимаем I ст = 0,015 А.

Тогда R о = (14,4 – 9) / (0,015 + 0,01) = 216 Ом.

Выберем стандартное значение сопротивления резистора R о по параметрическому ряду Е24 (см. приложение 4).

Принимаем R о = 220 Ом.

Для выбора типа резистора необходимо рассчитать рассеиваемую на корпусе резистора мощность

Р = I 2 R о; Р = (25· 10 -3) 2 · 220 = 0,138 Вт.

Принимаем стандартное значение мощности рассеяния на резисторе 0,25 Вт.

Выбираем тип резистора МЛТ-0,25-220 Ом ± 10 %.

4. Произведем проверку правильности выбора режима работы стабилитрона в схеме стабилизатора напряжения:

I ст.мин = (U вх –ΔU вх –U вых) /Rо – (I н +ΔI н);

I ст.мин = (14,4 – 1,44 – 9) · 10 3 / 220 – (10 + 2) = 6 мА;

I ст.макс = (U вх +ΔU вх –U вых) /Rо – (I н –ΔI н);

I ст.макс = (14,4 + 1,44 – 9) · 10 3 / 220 – (10 – 2) = 23 мА.

Если рассчитанные значения токов I ст.мин иI ст.макс выходят за пределы допустимых значений, то необходимо или выбрать другое значениеI ст, или изменить сопротивление резистораR о, или заменить стабилитрон.

5. Коэффициент стабилизации по напряжению для параметрического стабилизатора определяется по формуле:

К ст = (R о /R д + 1) /n ст,

К ст = (220 / 10 + 1) / 1,6 = 14,3.

6. Выходное сопротивление параметрического стабилизатора напряжения

R вых =R о = 10 Ом.

На рис. 1.7 представлена схема параметрического стабилизатора напряжения с температурной стабилизацией режима работы его основного элемента – стабилитрона.

Для повышения температурной стабильности выходного напряжения в этой схеме последовательно со стабилитроном включены несколько кремниевых диодов.

Температурный коэффициент напряжения (ТКН) диода по знаку противоположен ТКН стабилитрона, однако меньше по модулю. Поэтому для температурной компенсации U ст требуется несколько диодов. Кремниевые стабилитроны, включенные в прямом направлении также могут быть использованы для термостабилизации. Количество термостабилизирующих элементов определяют по отношению модуля ТКН стабилитрона к модулю ТКН элемента (диода). Результат деления округляется до целого числа.

Численные значения ТКН стабилитронов и диодов приведены в справочниках и выражены в %/ о С. Для кремниевых диодов, включенных в прямом направлении ТКН незначительно отличаются друг от друга для разных типов и находятся в пределах

1,4…1,7 мВ/ о С. Для германиевых диодов, например у Д7А – Д7Ж, величина ТКН составляет –1,9 мВ/ о С. Для выполнения расчетов термостабилизации в РГР-1 использовать диод Д7Ж, у которого ТКН составляет –1,9 мВ/ о С.

При этом следует иметь в виду, что при большом количестве термостабилизирующих диодов (три и более) необходимо учитывать прямое падение напряжение на них и динамическое сопротивление. Для диода Д7Ж прямое напряжение составляет 0,5 В, а динамическое сопротивление 2 Ом. Общее напряжение стабилизации определяется при этом как сумма напряжений стабилитрона и диодов, а общее динамическое сопротивление определяется как сумма динамических сопротивлений стабилитрона и диодов.

Расчет такого стабилизатора производится по методике, приведенной выше.

Рис. 1.7. Параметрический стабилизатор напряжения с термокомпенсацией

Примечание:

Последовательность расчета источника вторичного электропитания следующая – сначала выполняется расчет стабилизатора напряжения, затем сглаживающего фильтра и далее - выпрямительной схемы.

Принципиальную электрическую схему устройства выполнить в соответствии с ГОСТ и с учетом структурной схемы (рис 1.1)

Контрольная работа № 2

Расчет усилительного каскада на биполярном транзисторе

по схеме с общим эмиттером



Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки R Н.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

R Ц = U1 МИН / I Н.МАКС = 11 / 0,1 = 110 Ом То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: R Э = U2 / I Н.МАКС = 9 / 0,1 = 90 Ом Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: R = R Ц – R Э = 110 – 90 = 20 Ом С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 ). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

U R.МАКС = U1 МАКС – U2 = 15 – 9 = 6 В А теперь определим ток через резистор R из того же закона Ома: I R.МАКС = U R.МАКС / R = 6 / 20 = 0,3 А = 300 мА Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть I R.МАКС = I VD.МАКС = 0,3 А = 300 мА Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы .

А вот мощность рассеяния стабилитрона рассчитаем:

P МАКС = I VD.МАКС * U СТ = 0,3 * 9 = 2,7 Вт = 2700 мВт Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

U СТ = 9 В – номинальное напряжение стабилизации
I СТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
Р МАКС = 2700 мВт – мощность рассеяния стабилитрона при I СТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.
Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора

VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций. Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.
Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.


Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток.

Фото собранного мной стабилизатора:


Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “ “, в разделе “ “, мы продолжим рассмотрение статьи “ “. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения - преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки

Сегодня мы рассмотрим два простейших стабилизатора напряжения:
- параллельный параметрический стабилизатор напряжения на стабилитроне;
– последовательный стабилизатор напряжения на биполярном транзисторе.

Полупроводниковый стабилитрон - (другое название – диод Зенера) предназначен для стабилизации постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах ему отводится только роль источника опорного напряжения.

Один из внешних видов и обозначение стабилитрона:

Как работает стабилитрон

Напряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр ). При таком включении через стабилитрон течет обратный ток – Iобр .
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр ), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения. В этот момент вольтамперная характеристика стабилитрона (ВАХ ) резко идет вниз (почти параллельно оси Iобр ) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min ) и ток стабилизации минимальный (Iст min ).
При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max ) и ток стабилизации максимальный (Iст max ). С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.

Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max ) и напряжений стабилизации (Uст min и Uст max ). Внутри этих диапазонов лежат выбранные производителем номинальные значения Iст и Uст . Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.

Для примера можно воспользоваться программой “ “ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:

К примеру стабилитрон Д814Г:
- номинальный ток стабилизации (Iст)= 5 мА;
– номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.

Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, подобрать по нужным параметрам буржуйский аналог:

Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)

Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне .

Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.

Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:

Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.
К примеру : ток потребляемый нагрузкой составляет 10 мА, значит нам необходимо подобрать такой стабилитрон, чтобы его номинальный ток стабилизации не был меньше 10 мА (лучше конечно, если он будет больше).

Расчет параллельного параметрического стабилизатора напряжения на стабилитроне

Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт

Расчет:
1. По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max = 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых =15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст = 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R :
Pрез= Uпад*Iст = 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез = 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.

Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов . К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11). Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).
Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.

Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?

Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.

Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.
Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h 21э) раз (где β (h21э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).

Схема последовательного стабилизатора на биполярном транзисторе :

Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
Единственное отличие:
- к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h 21э) не менее 10 (β (h 21э) =Iнагрузки/Iст=50/5=10
– мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки)

Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):

Вот, в принципе, и все.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»