Число а в двоичной системе. Системы счисления. Позиционная система счисления двоичная. История возникновения двоичной системы счисления

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Счисления - вторая по распространенности после привычной всем десятичной, хотя мало кто об этом задумывается. Причина такой востребованности в том, что именно она используется в Об этом поговорим позже, а для начала - пара слов о том, вообще система счисления.

Этим словосочетанием обозначают систему записи или другого визуального представления чисел. Это сухое определение. К сожалению, не все понимают, что скрывается за этими словами. Однако все достаточно просто, и первая система счисления появилась тогда же, когда человек научился считать. Самый простой способ представление чисел - это отождествление одних предметов с другими, ну вот хотя бы пальцев на руках и количества плодов, собранных за определенное время. Однако пальцев на руках значительно меньше, чем может быть исчисляемых предметов. Их стали заменять палочками или черточками на песке или камне. Это и была самая первая система счисления, хотя само понятие появилось значительно позже. Она носит название непозиционная, потому что каждая цифра в ней имеет строго определенное значение, вне зависимости от того, какую позицию в записи она занимает.

Но такая запись крайне неудобна, и позже пришла идея группировать предметы и каждую группу обозначать камнем, а не палочкой, ну или рисунком другой формы при записи. Это был первый шаг к созданию позиционных систем, к которым относится и двоичная система счисления. Однако окончательно они сформировались только после изобретения цифр. В силу того, что считать изначально людям было удобнее на пальцах, которых у нормального человека 10, именно десятичная система и стала наиболее распространенной. В распоряжении человека, использующего эту систему цифры, от 0 до 9. Соответственно, когда при счете человек доходит до 9, то есть исчерпывает запас цифр, он пишет единицу в следующий разряд, а единицы обнуляет. И в этом кроется суть позиционных систем счисления: значение цифр в числе напрямую зависит от того, какую позицию она занимает.

Двоичная система счисления предоставляет для расчётов только две цифры, легко догадаться, что это 0 и 1. Соответственно, новые разряды при записи появляются в этом случае гораздо чаще: первый переход регистра происходит уже на числе 2, именно оно двоичной системе обозначается как 10.

Очевидно, что на письме эта система также не слишком удобна, отчего же она так востребована? Все дело в том, что при построении вычислительных машин десятичная система оказалась крайне неудобной и невыгодной, так как производство устройства, имеющего десять различных состояний, довольно дорого, да и занимают они очень много места. Вот и взяли на вооружение придуманную еще инками двоичную систему.

Перевод в двоичную систему счисления вряд ли вызовет у кого-то затруднения. Самый простой и понятный способ сделать это - деление числа на два, до тех пор, пока в ответе не получится ноль. При этом остатки записываются отдельно справа налево последовательно. Рассмотрим на примере, возьмем число 73: 73\2 = 36 и 1 в остатке, единицы записываем в крайнем правом положении, все дальнейшие остатки записываем левее этой единицы. Если вы все сделали правильно, то у вас должно было получиться следующее число: 1001001.

Как же перевод числа в двоичную систему счисления осуществляет компьютер, ведь с клавиатуры мы вводим ему десятичные числа? Неужели также делит на 2? Естественно, нет. Каждой кнопке на клавиатуре соответствует определенная строка в таблице кодировок. Мы наживаем кнопку, программа, называемая драйвер, передает процессору определенную последовательность сигналов. Тот в свою очередь передает запрос в таблицу, какой символ соответствует этой последовательности, и выводит этот символ на экран, или же производит действие, если это необходимо.

Теперь вы знаете, какое значение в нашей жизни имеет двоичная система счисления. Ведь очень многое в нашем мире сейчас делается при помощи электронных вычислительных систем, которые, в свою очередь, были бы совершенно другими, если бы не было этой системы.

Части статьи мы с вами разбирали двоичную систему счисления. Ну что же, думаю продолжим;-). Что же такое все таки бит? Что же он из себя представляет? Как Вы поняли, бит – это один знак в двоичной системе счисления. С помощью одного бита мы можем зашифровать две информации: ДА или НЕТ . Помните нашего человечка из первой статьи с варежками из мамонта? Его одна рука – это один бит. С помощью этой руки он может показать две информации: ДА или НЕТ. Рука поднята вверх – ДА, рука опущена – НЕТ. Еще раз повторюсь, в электронике за слово “ДА” принимают единичку, за слово “НЕТ” – нолик, то есть ДА=1, НЕТ=0, сигнал есть – 1, сигнала нет – 0.

А сколько же информации можно показать с помощью двух бит? Два бита – это два знака вместе в двоичной системе счисления. Пусть у нашего человечка обе руки свободны. Какие комбинации рук он может применить?

1)Подняты сразу две руки

2) Поднята правая рука, левая опущена

3) Поднята левая рука, правая опущена

4) Опущены обе руки

Кто придумает еще комбинацию, сразу же сделаю админом “Практической электроники” пожизненно:-). Больше комбинаций НЕТ! Это значит, что с помощью двух рук (двух битов) мы можем закодить 4 информации. Помните еще пример с первой статьи?

бар – это 1, дом – 0, пиво – 1, водка – 0.

1) Сидим в баре, пьем пиво (11)

2) Сидим в баре, пьем водку (10)

3) Сидим дома, пьем пиво (01)

4) Сидим дома, пьем водку (00)

В этом примере с помощью двух битов мы закодировали 4 информации. 11 или 10 и тд. – это двух битная запись информации.

А сколько информации можно закодировать, используя три бита? Можно получить 8 информаций. Опять же пример из первой части:

1) Сидим в баре, пьем пиво без Вована (110)

2) Сидим в баре, пьем водку без Вована (100)

3) Сидим дома, пьем пиво без Вована (010)

4) Сидим дома, пьем водку без Вована (000)

5) Сидим в баре, пьем пиво с Вованом (111)

6) Сидим в баре, пьем водку с Вованом (101)

7) Сидим дома, пьем пиво с Вованом (011)

8) Сидим дома, пьем водку с Вованом (001)

111, 011, 010 и тд – это трех битная запись информации.

А если использовать 4 бита информации? Получаем из примера прошлой же статьи:

1) Сидим в баре, пьем пиво без Вована, смотрим хоккей (1101)

2) Сидим в баре, пьем водку без Вована, смотрим хоккей (1001)

3) Сидим дома, пьем пиво без Вована, смотрим хоккей (0101)

4) Сидим дома, пьем водку без Вована, смотрим хоккей (0001)

5) Сидим в баре, пьем пиво с Вованом, смотрим хоккей (1111)

6) Сидим в баре, пьем водку с Вованом, смотрим хоккей (1011)

7) Сидим дома, пьем пиво с Вованом, смотрим хоккей (0111)

8) Сидим дома, пьем водку с Вованом, смотрим хоккей (0011)

9) Сидим в баре, пьем пиво без Вована, смотрим футбол (1100)

10) Сидим в баре, пьем водку без Вована, смотрим футбол (1000)

11) Сидим дома, пьем пиво без Вована, смотрим футбол (0100)

12) Сидим дома, пьем водку без Вована, смотрим футбол (0000)

13) Сидим в баре, пьем пиво с Вованом, смотрим футбол (1110)

14) Сидим в баре, пьем водку с Вованом, смотрим футбол (1010)

15) Сидим дома, пьем пиво с Вованом, смотрим футбол (0110)

16) Сидим дома, пьем водку с Вованом, смотрим футбол (0010)

Формула возможных вариантов

В этом примере с помощью четырех бит мы смогли закодировать 16 информаций. А что будет если использовать пять бит? Сколько информации мы можем закодировать? Неужели нам придется опять перебирать варианты? Ну уж нет! Для этого есть простая формула.

Возможные варианты информаций= 2 N , где N – количество битов

Предположим, мы используем два бита, следовательно, мы можем закодировать 2 2 =2х2=4 информаций, то есть 4 возможных варианта, если же используем три бита, то 2 3 =2х2х2=8, значит 8 информаций мы можем закодировать с помощью трех битов и тд. Нетрудно посчитать, что с помощью пяти битов можно закодировать 2 5 =2х2х2х2х2=32. Все просто, не правда ли? А сколько информаций мы можем закодировать, если использовать 8 бит? Итак, 2 8 =2х2х2х2х2х2х2х2=256 информаций! Неплохо! Короче говоря, если наш воин, который носит варежки из мамонта, имел бы восемь рук, он смог бы показать с помощью них 256 всех комбинаций, и если бы они договорились, что какая-то комбинация – это столько то убитых человечков. :-). Жесть))) Кстати, как Вы прочитали из прошлой статьи, 8 бит = 1 Байт. Например, информация с кодом 1011 0111 (пробел между группами из 4 битов ставится для удобства) – это восемь бит или просто Байт .

Перевод из одной системы в другую с помощью калькулятора

Давайте вернемся к нашей десятичной системе счисления. Если Вы помните, к десятичной системе мы относим циферки от 0 и до 9. А Вы знаете, что с помощью нехитрых вычислений, мы можем переводить информацию из одной системы счисления в другую? В вашей Винде есть одна нехитрая программка, на которую вы почти не обращаете внимание – это калькулятор;-), с помощью которого можно легко переводить числа из десятичной в двоичную систему и наоборот.

Нажимаем в меню панели “Вид” —->”Программист” и у нас получается вот такой прикольный калькулятор.


Теперь самое простое, нажимаем маркер на “Dec” и для аккуратного вида на “1 байт”. Пишем число в калькуляторе и смотрим на его двоичный код.

В данном примере я посмотрел, как запишется число “8” в двоичной системе счисления. Вуаля! А вот снизу под восьмеркой сразу и результат: 1000. Именно так запишется число “8” из десятичной системы счисления в двоичную.


Также калькулятор может переводить даже отрицательные числа из десятичной в двоичную систему. А вот число “-5” из десятичной системы в двоичной запишется, как 1111 1011 .


Кто-то из Вас может похвастаться: “Да я сам могу переводить числа из десятичной в двоичную на листочке бумаги”. Но, Вам это надо, когда есть такой замечательный калькулятор? ;-)

Двоично-десятичная система счисления

Трудно все это, не правда ли? Чтобы облегчить жизнь, была придумана двоично-десятичная система счисления . Эта система, думаю, проще некуда! Например, число “123” из десятичной системы нам надо представить в двоично-десятичную. Каждую цифру пишем в двоичном четырехбитном коде. Используем калькулятор. Число 1 в десятичной системе – это 0001, число 2 – 0010, а 3 – 0011. Итак, число “123”, записанное в двоично-десятичной системе счисления запишется, как 0001 0010 0011. Ну реально, проще некуда!

Система счисления - это способ отображения чисел на бумаге. Они используются в расчетах на оборудовании и цифровой аппаратуре. Двоичная система счисления сейчас представляет собой один из наиболее востребованных инструментов в вычислительных приборах. Рассмотрим особенности работы с этой системой счисления.

История возникновения двоичной системы счисления

Ученые древнего мира предложили производить вычисления, используя лишь 2 цифры, и предположили, что за таким методом расчета будущее. Это объясняется простотой такого метода исчисления: всего 2 положения (0 и 1), 2 позиции, например, есть сигнал или нет сигнала. Немецкий математик Лейбниц полагал, что математические операции, осуществляемые над 2 цифрами, несут в себе определенный порядок.

До 40-х годов 20 века теория двоичной системы не развивалась, пока американский ученый Клод Шеннон не предложил применять ее в работе электронных схем. Оказалось, что их использование в ПЭВМ гораздо предпочтительнее, ведь человеку непросто запоминать громоздкое скопление нулей и единиц. А в компьютере достаточно создать устройство, имеющее логические 0 и 1, то есть обладающее не более 2 логическими состояниями. Это может быть намагниченный или размагниченный сердечник, закрытый или открытый трансформатор и т.д. Всего 2 положения, а не 10, как могло бы быть при использовании десятичной системы при компьютерных вычислениях.

Характеристики двоичной системы счисления

К особенностям двоичной системы счисления следует отнести:

  • Использование всего пары цифр (0 и 1). Основание такой системы равно 2.
  • Алгебраические операции, проводимые с числами из двух цифр, не представляют большой сложности.
  • Хранение и преобразование сигналов видеоаппаратурой и приборами записи осуществляется в коде, состоящем из 0 и 1.
  • Цифровые каналы связи обмениваются данными, используя их представление в виде 0 и 1.

Счет в двоичной системе

И затем для каждой цифры по порядку идет повышение разряда:

100 - четыре.

110 - шесть.

После 7 цифры записываются в виде 4 разрядов:

1000 - восемь.

1001 - девять.

1010 - десять.

1011 - одиннадцать.

1100 - двенадцать.

1101 - тринадцать.

1110 - четырнадцать.

Перевод чисел из двоичной системы в десятичную

Представление десятичных чисел в двоичной системе делает их довольно громоздкими. Рассмотрим как происходит обратный процесс: перевод числа, состоящего из 0 и 1, в удобный для нас вид. Например, нужно перевести двоичный код 10101110 в десятичный вид.

Его можно разбить по степеням, как это выполняется в десятичной системе. Так, число 1587 можно отобразить как:

1000 + 500 + 80 + 7.

Или еще одним способом:

1*10 3 + 5*10 2 + 8*10 1 + 7*10 0 .

В предыдущей записи просуммированы степени, соответствующие разряду каждой цифры за вычетом 1. За основание степени взято число10, потому что это десятичная система счисления. Этот метод можно применить к числу, представленному в двоичном виде. Только за основание степени следует брать цифру 2. Получается:

10101110 = 1*2 7 + 0*2 6 + 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 1*2 1 + 0*2 0 = 128 + 0 + 32 + 0 + 8 + 4 + 2 + 0 = 174.

Степени двойки выбираются по следующему принципу: необходимо посчитать разряд цифры и вычесть 1 из этого значения. Следует помнить, что разряд увеличивается справа налево. Так, самая первая единица имеет восьмой разряд, тогда ее надо умножить на 2 7 и т.д.

Таким образом, двоичная форма числа 10101110 - это 174 в десятичном представлении. Корректная запись выглядит так:

10101110 2 = 174 10 .

Бывает необходимость в обратном процессе: перевести десятичный вид записи в последовательность из 0 и 1. Это выполняется путем деления на 2 и образованием двоичного числа из остатка. Например, число 69.

Делимое Делитель Частное Остаток
69 2 34 1
34 2 17 0
17 2 8 1
8 2 4 0
4 2 2 0
2 2 1 0
1 2 0 1

Смотрим на остаток. Получаем число в двоичной форме, начиная с последней строчки: 1000101 (эти цифры расположены в столбце «Остаток», если смотреть снизу вверх). Нужно проверить полученный результат:

1000101 = 1*2 6 + 0*2 5 + 0*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 4 +1 = 69.

Математические операции с двоичными числами

Сложение.

Это основная арифметическая операция при расчетах на компьютерах. Основные принципы сложения двоичных чисел опираются на правила:

Таким образом, складывая в столбик 1101 2 и 110 2 , получаем 10011 2 или 19 10 .

Вычитание .

Эта операция идентична сложению, если представить, что одно из двоичных чисел является отрицательным. В таком случае нужно учитывать модули складываемых чисел.

Правила, используемые при вычитании:

0 - 1 = 1 (занимаем из старшего разряда).

Например, вычитаем из 1110 2 число 101 2 , получаем 1001 2 или 9 10 .

Умножение .

На бумаге умножение представляет собой совокупность операций сложения. Например, необходимо произвести умножение 10 10 на 40 10 .

Преобразуем их в совокупность 0 и 1:

10 10 =00001010 2

40 10 = 00101000 2

Оба числа в двоичной форме имеют слева и справа несколько нулей, которые не играют роли в операции умножения. Значимые части - это 101 в числе 10 и 101 в числе 40, расположенные между нулями. Их нужно перемножить, а нули просто дописать в итоговом результате:

Перемножаем левую и правую единицу второго множителя на первый множитель, затем суммируем полученный промежуточный результат. Нули складываем и переписываем в итоговый результат умножения, который в двоичной форме выглядит так: 000000110010000 2 (нижняя строчка слева направо).

Проверяя, получаем:

1 * 2 8 + 1 * 2 7 + 1 * 2 4 = 256 + 128 + 16 = 400.

Деление .

Рассмотрим наиболее простой пример деления без остатка. Надо разделить 14 10 на 2 10 . В двоичном виде это выглядит так:

14 10 = 1110 2 .

Делим 1110 2 на 10 2 в столбик:

1110 |10

Получаем число 111 2 , что равняется 7 в десятичной системе счисления. При проверке умножением доказываем точность результата:

Смотрим на нижнюю строчку слева направо, результат умножения - 1110 2 . Ответ верный.

Имеющей основание 2. Она непосредственно реализована в цифровой электронике, используется в большинстве современных вычислительных устройств, включая компьютеры, мобильные телефоны и разного рода датчики. Можно сказать, что все технологии нашего времени построены на бинарных числах.

Запись чисел

Любое число, сколь бы большим оно ни было, в двоичной системе записывается посредством двух символов: 0 и 1. Например цифра 5 из всем знакомой десятичной системы в двоичной будет представлено как 101. Бинарные числа могут быть обозначены префиксом 0b или амперсандом (&), например: &101.
Во всех системах счисления, исключая десятичную, символы читаются по одиночке, то есть взятое в пример 101 читается как "один ноль один".

Перевод из одной системы в другую

Программисты, постоянно работающие с двоичной системой счисления, на ходу могут перевести бинарное число в десятичное. Это действительно можно сделать и без всяких формул, особенно если человек имеет представление о том, как работает самая малая часть компьютерного "мозга" - бит.

Цифра ноль так же обозначает 0, а цифра один в двоичной системе тоже будет единицей, но что делать дальше, когда цифры закончились? Десятичная система "предложила" бы в таком случае ввести термин "десяток", а в бинарной системе это будет называться "двойка".

Если 0 это &0 (амперсанд - обозначение двоичной системы), 1 = &1, то 2 будет обозначаться как &10. Тройку тоже можно записать в двух разрядах, она будет иметь вид &11, то есть одна двойка и одна единица. Возможные комбинации исчерпаны, и в десятичной системе на этом этапе вводятся сотни, а в двоичной - "четверки". Четыре - это &100, пять - &101, шесть - &110, семь - &111. Следующая, более крупная единица счета - это восьмерка.

Можно заметить особенность: если в десятичной системе разряды умножаются на десять (1, 10, 100, 1000 и так далее), то в двоичной, соответственно, на два: 2, 4, 8, 16, 32. Это соответствует размеру флеш-карт и прочих накопителей, использующихся в компьютерах и других устройствах.

Что такое бинарный код

Числа, представленные в двоичной системе счисления, называются бинарными, однако в таком виде можно представить и не числовые значения (буквы и символы). Таким образом, в цифрах можно закодировать слова и тексты, правда вид они будут иметь не столь лаконичный, ведь для записи всего одной буквы потребуется несколько нолей и единиц.

Но каким образом компьютерам удается считывать такое количество информации? На самом деле все проще, чем кажется. Люди, привыкшие к десятичной системе счисления, сначала переводят двоичные числа в более привычные, и только потом производят с ними какие-либо манипуляции, а в основе компьютерной логики изначально лежит бинарная система чисел. Единице в технике соответствует высокое напряжение, а нулю - низкое, либо для единицы напряжение есть, а для ноля вообще отсутствует.

Бинарные числа в культуре

Ошибкой будет считать, что - это заслуга современных математиков. Хотя бинарные числа и являются основополагающими в технологиях нашего времени, использовались они уже очень давно, причем в разных уголках планеты. Используются длинная линия (единица) и прерывистая (ноль), кодирующие восемь символов, означающих восемь стихий: небо, землю, гром, воду, горы, ветер, огонь и водоем (массу воды). Этот аналог 3-битных цифр описывался в классическом тексте книги Перемен. Триграммы составляли 64 гексаграммы (6-битные цифры), порядок которых в книге Перемен был расположен в соответствии с двоичными цифрами от 0 до 63.

Этот порядок был составлен в одиннадцатом веке китайским ученым Шао Юном, хотя нет доказательств того, что он действительно понимал двоичную систему счисления в целом.

В Индии еще до нашей эры тоже применялись бинарные числа в математической основе для описания поэзии, составленные математиком Пингалой.

Узелковая письменность инков (кипу) считается прообразом современных баз данных. Именно они впервые применили не только бинарный код числа, но и не числовые записи в двоичной системе. кипу характерно не только первичными и дополнительными ключами, но и использованием позиционных чисел, кодированием с помощью цвета и сериями повторений данных (циклами). Инки впервые применили способ ведения бухгалтерского учета, называемый двойной записью.

Первый из программистов

Двоичную систему счисления, основанную на цифрах 0 и 1, описал и знаменитый ученый, физик и математик, Готфрид Вильгельм Лейбниц. Он увлекался древней китайской культурой и, изучая традиционные тексты книги Перемен, заметил соответствие гексаграмм бинарным числам от 0 до 111111. Он восхитился свидетельствам подобных достижений в философии и математике для того времени. Лейбница можно назвать первым из программистов и информационных теоретиков. Именно он обнаружил, что если записать группы двоичных чисел вертикально (одно под другим), то в получившихся вертикальных столбцах чисел будут регулярно повторяться ноли и единицы. Это позвонило ему предположить, что возможно существование совершенно новых математических законов.

Лейбниц понял и то, что бинарные числа оптимальны для применения в механике, основой которой должна быть смена пассивных и активных циклов. На дворе был 17 век, а этот великий ученый изобрел на бумаге вычислительную машину, работавшую на основе его новых открытий, однако быстро понял, что цивилизация еще не достигла такого технологического развития, и в его время создание такой машины будет невозможным.

Двоичная система

Двоичная система счисления - это позиционная система счисления с основанием 2. В этой системе счисления натуральные числа записываются с помощью всего лишь двух символов (в роли которых обычно выступают цифры 0 и 1).

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»