Отношения делимости. Отношение делимости в кольце целых чисел. Свойства. Простые и составные числа

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq.

В этом случае число b называютделителем числа а , а число а - кратным числа b.

Например , 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а M b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства a = 1 × а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т. е. если а M b, то b £ а.

Доказательство. Так как а M b, то существует такое qÎ N, что а = bq и, значит, а - b = bq - b = b ×(q - 1). Поскольку qÎ N, то q ³ 1. . Тогда b ×(q - 1) ³ 0 и, следовательно, и b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1,2,3,4,6,9, 12, 18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например , 13 – простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4. Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, -их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, .... и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,... .

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо ра­венство а = а× 1. Так как 1 Î N то, по определению отношения дели­мости, аMа.

Теорема 3 . Отношение делимости антисимметрично, т.е. если а M b и а ¹ b, то .

Доказательство. Предположим противное, т. е. что bMа. Но тогда а£ b, согласно теореме, рассмотренной выше.

По условию а M b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а.будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предпо­ложение неверное и теорема доказана.

Теорема 4. Отношение делимости транзитивно, т.е. если а M b и b M с, то а M с.

Доказательство. Так как а M b, q, что а = b q , а так как bM с, то существует такое натуральное число р , что b = ср. Но тогда имеем: а = b q = (ср)q = с(рq). Число рq - натуральное. Значит, по определению отношения делимости, а. M с.

Теорема 5 (признак делимости суммы). Если каждое из натураль­ных чисел а 1, а 2 ,…а п делится на натуральное число b, то и их сумма а 1 + а 2 + … + а п делится на это число.

Например , не производя вычислений, можно сказать, что сумма 175 + 360 +915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 де­лятся на b и а 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Теорема 7 (признак делимости произведения). Если число а де­лится на b, то произведение вида ах, где х е N. делится на b.

Из теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например , произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34:2,376: 2,124: 2,но 125 не делится на 2.

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число п то а b делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимо­сти произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и а делится на b.

Как уже отмечалось, натуральное число а делится нацело на натуральное число b, если существует натуральное число с, при умножении которого на b получается а:

Слово «нацело» обычно опускают – для краткости.

Если а делится на b, то говорят еще, что а кратно b. Например, число 48 кратно числу 24.

Теорема 1. Если один из множителей делится на некоторое число, то и произведение делится на это число .

Например, 15 делится на 3, значит, и 15∙11 делится на 3, потому что 15∙11=(3∙5)∙11=3∙(5∙11).

Эти рассуждения подходят и для общего случая. Пусть число а делится на с, тогда найдется такое натуральное число n, что a = n∙c. Рассмотрим произведение числа а и произвольного натурального числа b. a∙b = n∙(c∙b) =
= n∙(b∙c) = (n∙b)∙c. Отсюда, по определению, вытекает, что произведение a∙b тоже делится на с. Что и требовалось доказать.

Теорема 2. Если первое число делится на второе, а второе делится на третье, то первое число делится на третье .

Например, 777 делится на 111, потому что 777=7∙111, а 111 делится на 3, потому что 111 = 3∙37. Из этого следует, что 777 делится на 3, так как 777 = 3∙(37∙7).

В общем случае эти рассуждения можно повторить почти дословно. Пусть число а делится на число b, а число b делится на число с. Это означает, что найдутся такие натуральные числа n и m, что a = n∙b и b = m∙c. Тогда число а можно представить в виде: а = n∙b = n∙(m∙c) = (n∙m)∙c. Равенство а = (n∙m)∙c означает, что число а тоже делится на с.

Теорема 3. Если каждое из двух чисел делится на некоторое число, то их сумма и разность делятся на это число .

Например, 100 делится на 4, потому что 100=25∙4; 36 тоже делится на 4, потому что 36 = 9∙4. Из этого следует, что 136 делится на 4, потому что

136 = 100+ 36 = 25∙4+ 9∙4 = (25+ 9)∙4 = 34∙4.

Можно также заключить, что число 64 делится на 4, потому что

64 = 100 – 36 = 25∙4 – 9∙4 =(25 – 9)∙4= 16∙4.

Докажем теорему в общем случае. Пусть каждое из чисел а и b делится на число с. Тогда, по определению, найдутся такие натуральные числа n и m, что
а = n∙c и b = m∙c. Рассмотрим сумму чисел а и b.

a + b = n∙c + m∙c = (n + m)∙c.

Отсюда следует, что а + b делится на с.

Аналогично, а – b = n∙c – m∙c = (n – m)∙c. Следовательно, а – b делится на с.

Теорема 4. Если одно из двух чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число .

Например, 148 делится на 37, потому что 148 = 4∙37, а 11 не делится на 37. Очевидно, что сумма 148 + 11 и разность 148 – 11 не делятся на 37, иначе это противоречило бы свойству 3.



Признаки делимости

Если число оканчивается цифрой 0, то оно делится на 10 .

Например, число 4560 оканчивается цифрой 0, его можно представить в виде произведения 456∙10, которое делится на 10 (по теореме 1).

Число 4561 не делится на 10, потому что 4561 = 4560+1 – сумма числа 4560, делящегося на 10, и числа 1, не делящегося на 10 (по теореме 4).

Если число оканчивается одной из цифр 0 или 5, то оно делится на 5 .

Например, число 2300 делится на 5, потому что это число делится на 10, а 10 делится на 5 (по теореме 2).

Число 2305 оканчивается цифрой 5, оно делится на 5, так как его можно записать в виде суммы чисел, делящихся на 5: 2300 + 5 (по теореме 3).

Число 52 не делится на 5, потому что 52 = 50 + 2 – сумма числа 50, делящегося на 5, и числа 2, не делящегося на 5 (по теореме 4).

Если число оканчивается одной из цифр 0, 2, 4, 6, 8, то оно делится на 2.

Например, число 130 оканчивается цифрой 0, оно делится на 10, а 10 делится на 2, следовательно, 130 делится на 2.

Число 136 оканчивается цифрой 6, оно делится на 2, так как его можно записать в виде суммы чисел, делящихся на 2: 130 + 6 (по теореме 3).

Число 137 не делится на 2, потому что 137 = 130 + 7 – сумма числа 130, делящегося на 2, и числа 7, не делящегося на 2 (по теореме 4).

Число, делящееся на 2, называют четным.

Число, не делящееся на 2, называют нечетным .

Например, числа 152 и 790 – четные, а числа 111 и 293 – нечетные.

Если сумма цифр числа делится на 9, то и само число делится на 9 .

Например, сумма цифр 7 + 2 + 4 + 5 = 18 числа 7245 делится на 9. Число 7245 делится на 9, потому что его можно представить в виде суммы 7∙1000 +
+ 2∙100 + 4∙10 + 5 = 7 (999 + 1) + 2∙(99 + 1) + + 4∙(9 + 1) + 5 = (7∙999 + 2∙99 +
+ 4∙9) + (7 + 2 + 4 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр данного числа – также делится на 9 (по теореме 3).

Число 375 не делится на 9, так как сумма его цифр 3 + 7 + 5=15 не делится на 9 Это можно доказать следующим образом: 375 = 3∙(99 + 1) + 7∙(9+1) + 5 =
+ (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр числа 375 – не делится на 9 (по теореме 4).



Если сумма цифр числа делится на 3, то и само число делится на 3 .

Например, у числа 375 сумма цифр 3 + 7 + 5=15 делится на 3, и оно само делится на 3 потому, что 375 = (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 375 – также делится на 3.

Сумма цифр числа 679, равная 6 + 7 + 9 = 22, не делится на 3, и само число не делится на 3, потому что 679 = (6∙99 + 7∙9) + (6 + 7 + 9), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 679 – не делится на 3.

Примечание . Когда говорят «число оканчивается цифрой...» имеют в виду «десятичная запись числа заканчивается цифрой...»

Простые и составные числа

Каждое натуральное число р делится на 1 и само на себя:

р:1=р, р:р=1.

Простым числом называют такое натуральное число, которое больше единицы и делится только на 1 и само на себя .

Вот первые десять простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Непростые натуральные числа, большие единицы, называют составными . Каждое составное число делится на 1, само на себя и еще хотя бы на одно натуральное число.

Вот все составные числа, меньшие 20:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18.

Таким образом, множество всех натуральных чисел состоит из простых чисел, составных чисел и единицы.

Простых чисел бесконечно много, есть первое число – 2, но нет последнего простого числа.

Делители натурального числа

Если натуральное число а делится на натуральное число b, то число b называют делителем числа а.

Например, делителями числа 13 являются числа 1 и 13, делителями числа 4 – числа 1, 2, 4, а делителями числа 12 – числа 1, 2, 3, 4, 6, 12.

Каждое простое число имеет только два делителя – единицу и само себя, а каждое составное число, кроме единицы и себя, имеет и другие делители.

Если делитель – простое число, то его называют простым делителем. Например, число 13 имеет простой делитель 13, число 4 – простой делитель 2, а число 12 – простые делители 2 и 3.

Каждое составное число можно представить в виде произведения его простых делителей. Например,

28 = 2∙2∙7 = 2 2 ∙7;

81 = 3∙3∙3∙3 = З 4 ;

100 = 2∙2∙5∙5 = 2 2 ∙5 2 .

Правые части полученных равенств называют разложением на простые множители чисел 28, 22, 81 и 100.

Разложить данное составное число на простые множители – значит представить его в виде произведения различных его простых делителей или их степеней.

Покажем, как можно разложить число 90 на простые множители.

1) 90 делится на 2, 90:2 = 45;

2) 45 не делится на 2, но делится на 3, 45:3= 15;

3) 15 делится на 3, 15:3 = 5;

4) 5 делится на 5, 5:5 = 1.

Таким образом, 90 = 2∙45 = 2∙3∙15 = 2∙3∙3∙5.

Наибольший общий делитель

Число 12 имеет делители 1, 2, 3, 4, 12. Число 54 имеет делители 1, 2, 3, 6, 9, 18, 27, 54. Мы видим, что числа 12 и 54 имеют общие делители 1, 2, 3, 6.

Наибольшим общим делителем чисел 12 и 54 является число 6.

Наибольший общий делитель чисел а и b обозначают: НОД (а, b).

Например, НОД (12, 54) = 6.

Наименьшее общее кратное

Число, делящееся на 12, называется кратным числу 12. Числу 12 кратны числа 12, 24, 36, 48, 60, 72, 84, 96, 108 и т.д. Числу 18 кратны числа 18, 36, 54, 72, 90, 108, 126 и т. д.

Мы видим, что имеются числа, кратные одновременно 12 и 18. Например, 36, 72, 108, ... . Эти числа называются общими кратными чисел 12 и 18.

Наименьшим общим кратным натуральных чисел а и b называют наименьшее натуральное число, делящееся нацело на а и b. Это число обозначают: НОК (а, b).

Наименьшее общее кратное двух чисел обычно находят одним из двух способов. Рассмотрим их.

Найдем НОК(18, 24).

I способ. Будем выписывать числа, кратные 24 (большему из данных чисел), проверяя, делится ли каждое из них на 18: 24∙1=24 – не делится на 18, 24∙2 = 48 – не делится на 18, 24∙3 = 72 – делится на 18, поэтому НОК (24, 18) =
= 72.

II способ. Разложим числа 24 и 18 на простые множители: 24 = 2∙2∙2∙3,
18 = 2∙3∙3.

НОК(24, 18) должно делиться и на 24, и на 18. Поэтому искомое число содержит все простые делители большего числа 24 (т. е. числа 2, 2, 2, 3) и еще недостающие множители из разложения меньшего числа 18 (еще одно число 3). Поэтому НОК(18, 24) = 2∙2∙2∙3∙3 = 72.

Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел. Например, 24 и 25 – взаимно простые числа. Поэтому НОК (24, 25) = 24∙25 = 600.

Если одно из двух чисел делится нацело на другое, то наименьшее общее кратное этих чисел равно большему из них. Например, 120 делится нацело на 24, следовательно, НОК (120, 24)= 120.

Целые числа

Напоминание. Числа, которые используют при подсчете количества предметов, называют натуральными числами . Нуль не считается натуральным числом. Натуральные числа и нуль, записанные в порядке возрастания и без пропусков, образуют ряд целых неотрицательных чисел:

В этой разделе будут введены новые числа – целые отрицательные .

Целые отрицательные числа

Базовый пример из жизни – термометр. Предположим, он показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания: 7 – 4 = 3. Если температура понизится на 7°, то термометр покажет 0°: 7 – 7 = 0.

Если же температура понизится на 8°, то термометр покажет –1° (1° мороза). Но результат вычитания 7 – 8 нельзя записать с помощью натуральных чисел и нуля, хотя он имеет реальный смысл.

Отсчитать в ряду неотрицательных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 – 8 стало выполнимым, расширим ряд неотрицательных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак «–», показывающий, что это число стоит слева от нуля.

Записи –1, –2, –3, ... читают «минус 1», «минус 2», «минус 3» и т. д.:

–5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ... .

Полученный ряд чисел называют рядом целых чисел. Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными.

Лекция 4. Делимость на множестве целых неотрицательных чисел

1. Понятие отношения делимости, его свойства.

2. Признаки делимости суммы, разности, произведения.

3. Признаки делимости на 2, 3, 4, 5, 9 (два доказать).

В начальном курсе математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются.

Отношение делимости и его свойства

Рассмотрим отношение делимости на множестве целых неотрицательных чисел.

Определение 1. Пусть даны целые неотрицательные числа а и b . Говорят, что число а b , если существует такое целое неотрицательное число q , что а=bq . В этом случае число b называют делителем числа а , а число а - кратным числа b.

Обознаение: а b и говорят а кратно b , а b называют делителем числа а .

Заметим, что понятие "делитель данного числа" следует отличать от понятия "делитель", обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия "делитель" и "делитель данного числа" совпадают.

Замечание. Из определения 1 и равенства а=1а , следует, что 1 является делителем любого целого неотрицательного числа.



Свойства отношения делимости:

Отношение делимости рефлексивно, антисимметрично, транзитивно.

Теорема 1. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя
.

Доказательство:

Для справедливо равенство а=а 1. Т.к. 1 , то по опр. 1 .

Теорема 2. Отношение делимости антисимметрично, т. е.

Доказательство (методом от противного): Предположим, что
. Тогда очевидно, что b≥a. Но по условию
и значит а≥b. Выполнение этих неравенств возможно только при а=b, что противоречит условию. Следовательно, наше предположение неверно и справедливость свойства установлена.

Теорема 3. Отношение делимости транзитивно, то есть

Доказательство:

Т.к.
, то по опр.1 . Аналогично, т.к. b с, то .

Тогда a=bq=(cp)q=c(pq). Число рq- натуральное. Это означает по опр.1, что а с.

Таким образом, отношение делимости на множестве N, обладая свойствами рефлексивности, антисимметричности и транзитивности, является отношением нестрогого порядка.

Делимость суммы, разности, произведения целых неотрицательных чисел

Теорема 4 (признак делимости суммы): Если каждое слагаемое суммы делится на натуральное число b, то и вся сумма делится на это число, то есть

Доказательство: Пусть
. Тогда существуют q 1 ,q 2 ,…q n
N такие, что выполняются равенства: а 1 =bq 1 , а 2 =bq 2 , …, а 1 n = bq n . Из этих равенств следует, что а 1 +а 2 +…а n =bq 1 +bq 2 +…+bq n =b(q 1 +q 2 +…+q n), где q 1 +q 2 +…+q n =q
N 0 . По определению отношения делимости это означает, что .

Теорема 5 (признак делимости разности): Если каждое из чисел а и b делится на с и а≥b , то разность а-b делится на с , т. е. если .

Доказательство: Пусть
. Тогда существуют q 1 ,q 2
N такие, что а=cq 1 , b=cq 2 . Поскольку а≥b, то q 1 >q 2 . Таким образом, имеем а-b =cq 1 -cq 2 =c(q 1 -q 2)=cq, где q 1 -q 2 =q
N. Следовательно, .

Теорема 6 (признак делимости произведения): Если хотя бы один из множителей произведения делится на натуральное число b, то и все произведение делится на это число, то есть
.

Доказательство: Пусть а k b, тогда существует q
N такое, что а k =bq. Отсюда, используя коммутативный и ассоциативный законы умножения, можем записать . Поскольку произведение целых неотрицательных чисел является целым неотрицательным числом, то последнее равенство означает, что
.

Теорема 7: Если в произведении ab множитель а делится на натуральное число m , а множитель b делится на натуральное число n , то произведение ab делится на произведение nm , то есть .

Доказательство: Пусть a m и b n, тогда существуют q 1 ,q 2
N такие что, a=mq 1 , b=nq 2 . Отсюда на основании комм. и ассоц. законов умножения имеем ab=(mq 1)(nq 2)=(mn)(q 1 q 2)=(mn)q, где q 1 q 2 =q
N . следовательно, ab mn.

Теорема 8: Если в сумме одно слагаемое не делится на натуральное число b , а все остальные слагаемые делятся на это число, то и вся сумма на число b не делится.

Доказательство: Пусть S=a 1 +a 2 +…+a n +c, где а 1 b, a 2 b, …, a n b, но
. Докажем, что
. Предположим противное, то есть S b. Тогда с=S-(a 1 +a 2 +…+a n), где S b, и (a 1 +a 2 +…+a n) b. По теореме о делимости разности это означает, что с b. Полученное противоречие и доказывает теорему.

Признаки делимости

Теорема 9 (признак делимости на 2) Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0,2,4,6,8.

Доказательство. Пусть число х

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , где а n , а n-1,…, a 1 принимают значения 0, 1, 2, ...9, а n ≠0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х: .2.

Так как 10: .2, то 10 2: .2, 10 3: .2,…,10 n: .2 и, значит, (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : .2. По условию а 0 тоже делится на 2, поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число хделится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0,2,4,6,8.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде: а 0 = х - (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10). Но тогда, по теореме о делимости разности, а 0: . 2, поскольку х: . 2 и (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : . 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0,2,4,6,8.

Теорема 10 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказать самостоятельно!

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 11 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х .

Доказательство . Пусть число х записано в десятичной системе счисления, т.е.

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х: . 4.

Так как 100: . 4, то (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, тo двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде:

а 1 · 10 + а 0 = х- (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) .

Так как х: . 4 и (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4, то по теореме о делимости разности (а 1 · 10 + а 0) : . 4. Но выражение а 1 · 10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

Теорема12 (признак делимости на 9) Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилось на 9.

Доказательство . Докажем сначала, что числа вида 10 n - 1 делятся на 9. Действительно, 10 n - 1 = (9·10 n-1 + 10 n-1) - 1 = (9·10 n-1 +9·10 n-2 + 10 n-2)-1 = (9·10 n-1 +9·10 n-2 + …+10)-1=9·10 n-1 +9·10 n-2 + …+9. Каждое слагаемое полученной сум­мы делится на 9, значит, и число 10 n - 1 делится на 9.

Пусть число х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и (a n +a n-1 +…+a 1 +a 0) : . 9. Докажем, что тогда х: . 9.

Преобразуем сумму а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , при­бавив и вычтя из нее выражение a n +a n-1 +…+a 1 +a 0 и записав результат в таком виде:

х = (а n ·10 - a n)+( а n-1 ·10 n-1 - a n-1)+…+( а 1 · 10 - a 1)+ (а 0 – а 0)+ (a n +a n-1 +…+a 1 +a 0)= n ·(10 n -1)+ a n-1 ·(10 n-1 -1)+…+ a 1 ·(10 -1)+ (a n +a n-1 +…+a 1 +a 0).

В последней сумме каждое слагаемое делится на 9:

а n ·(10 n -1) : . 9, так как (10 n -1) : . 9,

a n-1 ·(10 n-1 -1) : . 9,так как(10 n-1 -1) : . 9 и т.д.

a 1 ·(10 -1) : . 9, так как (10- 1) : . 9,

(a n +a n-1 +…+a 1 +a 0) : . 9 по условию.

Следовательно, х: . 9.

Докажем обратное, т.е. если х: . 9, то сумма цифр его деся­тичной записи делится на 9.

Равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 запи­шем в таком виде:

a n +a n-1 +…+a 1 +a 0 = х - (а n (10 n - 1) + а n-1 ·(10 n-1 -1) +…+ a 1 ·(10 -1).

Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 9, то по теореме о делимости разности (a n +a n-1 +…+a 1 +a 0) : . 9, т.е. сумма цифр десятичной записи числа x делится на 9, что и требовалось доказать.

Теорема15 (признак делимости на 3): Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилась на 3.

Доказательство этого утверждения аналогично доказа­тельству признака делимости на 9.


Материалом этой статьи начинается теория делимости целых чисел . Здесь мы введем понятие делимости и укажем принятые термины и обозначения. Это нам позволит перечислить и обосновать основные свойства делимости.

Навигация по странице.

Понятие делимости

Понятие делимости – это одно из основных понятий арифметики и теории чисел. Мы будем говорить о делимости и в частных случаях - о делимости . Итак, дадим представление о делимости на множестве целых чисел.

Целое число a делится на целое число b , которое отлично от нуля, если существует такое целое число (обозначим его q ), что справедливо равенство a=b·q . В этом случае также говорят, что b делит a . При этом целое число b называется делителем числа a , целое число a называется кратным числа b (для получения более детальной информации о делителях и кратных обращайтесь к статье делители и кратные), а целое число q называют частным .

Если целое число a делится на целое число b в указанном выше смысле, то можно сказать, что a делится на b нацело . Слово «нацело» в этом случае дополнительно подчеркивает, что частное от деления целого числа a на целое число b является целым числом.

В некоторых случаях для данных целых чисел a и b не существует такого целого числа q , при котором справедливо равенство a=b·q . В таких случаях говорят, что целое число a не делится на целое число b (при этом имеется в виду, что a не делится на b нацело). Однако в этих случаях прибегают к .

Разберемся с понятием делимости на примерах.

    Любое целое число a делится на число a , на число −a , a , на единицу и на число −1 .

    Докажем это свойство делимости.

    Для любого целого числа a справедливы равенства a=a·1 и a=1·a , из которых следует, что a делится на a , причем частное равно единице, и что a делится на 1 , причем частное равно a . Для любого целого числа a также справедливы равенства a=(−a)·(−1) и a=(−1)·(−a) , из которых следует делимость a на число, противоположное числу a , а также делимость a на минус единицу.

    Отметим, что свойство делимости целого числа a на себя называют свойством рефлексивности.

    Следующее свойство делимости утверждает, что нуль делится на любое целое число b .

    Действительно, так как 0=b·0 для любого целого числа b , то нуль делится на любое целое число.

    В частности, нуль делится и на нуль. Это подтверждает равенство 0=0·q , где q – любое целое число. Из этого равенства вытекает, что частным от деления нуля на нуль является любое целое число.

    Также нужно отметить, что на 0 не делится никакое другое целое число a , отличное нуля. Поясним это. Если бы нуль делил целое число a , отличное от нуля, то должно было бы быть справедливо равенство a=0·q , где q – некоторое целое число, а последнее равенство возможно только при a=0 .

    Если целое число a делится на целое число b и a меньше модуля числа b , то a равно нулю. В буквенном виде это свойство делимости записывается так: если ab и , то a=0 .

    Доказательство.

    Так как a делится на b , то существует целое число q , при котором верно равенство a=b·q . Тогда должно быть справедливо и равенство , а в силу должно быть справедливо и равенство вида . Если q не равно нулю, то , откуда следует, что . Учитывая полученное неравенство, из равенства следует, что . Но это противоречит условию . Таким образом, q может быть равно только нулю, при этом получим a=b·q=b·0=0 , что и требовалось доказать.

    Если целое число a отлично от нуля и делится на целое число b , то модуль числа a не меньше модуля числа b . То есть, если a≠0 и ab , то . Это свойство делимости непосредственно вытекает из предыдущего.

    Делителями единицы являются только целые числа 1 и −1 .

    Во-первых, покажем, что единица делится на 1 и на −1 . Это следует из равенств 1=1·1 и 1=(−1)·(−1) .

    Осталось доказать, что никакое другое целое число не является делителем единицы.

    Предположим, что целое число b , отличное от 1 и −1 , является делителем единицы. Так как единица делится на b , то в силу предыдущего свойства делимости должно выполняться неравенство , которое равносильно неравенству . Этому неравенству удовлетворяют только три целых числа: 1 , 0 , и −1 . Так как мы приняли, что b отлично от 1 и −1 , то остается лишь b=0 . Но b=0 не может быть делителем единицы (что мы показали при описании второго свойства делимости). Этим доказано, что никакие числа, отличные от 1 и −1 , не являются делителями единицы.

    Чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b .

    Докажем сначала необходимость.

    Пусть a делится на b , тогда существует такое целое число q , что a=b·q . Тогда . Так как является целым числом, то из равенства следует делимость модуля числа a на модуль числа b .

    Теперь достаточность.

    Пусть модуль числа a делится на модуль числа b , тогда существует такое целое число q , что . Если числа a и b положительные, то справедливо равенство a=b·q , которое доказывает делимость a на b . Если a и b отрицательные, то верно равенство −a=(−b)·q , которое можно переписать как a=b·q . Если a – отрицательное число, а b – положительное, то имеем −a=b·q , это равенство равносильно равенству a=b·(−q) . Если a – положительное, а b – отрицательное, то имеем a=(−b)·q , и a=b·(−q) . Так как и q и −q являются целыми числами, то полученные равенства доказывают, что a делится на b .

    Следствие 1.

    Если целое число a делится на целое число b , то a также делится на число −b , противоположное числу b .

    Следствие 2.

    Если целое число a делится на целое число b , то и −a делится на b .

    Важность только что рассмотренного свойства делимости сложно переоценить - теорию делимости можно описывать на множестве целых положительных чисел, а это свойства делимости распространяет ее и на целые отрицательные числа.

    Делимость обладает свойством транзитивности: если целое число a делится на некоторое целое число m , а число m в свою очередь делится на некоторое целое число b , то a делится на b . То есть, если am и mb , то ab .

    Приведем доказательство этого свойства делимости.

    Так как a делится на m , то существует некоторое целое число a 1 такое, что a=m·a 1 . Аналогично, так как m делится на b , то существует некоторое целое число m 1 такое, что m=b·m 1 . Тогда a=m·a 1 =(b·m 1)·a 1 =b·(m 1 ·a 1) . Так как произведение двух целых чисел является целым числом, то m 1 ·a 1 - это некоторое целое число. Обозначив его q , приходим к равенству a=b·q , которое доказывает рассматриваемое свойство делимости.

    Делимость обладает свойством антисимметричности, то есть, если a делится на b и одновременно b делится на a , то равны либо целые числа a и b , либо числа a и −b .

    Из делимости a на b и b на a можно говорить о существовании целых чисел q 1 и q 2 таких, что a=b·q 1 и b=a·q 2 . Подставив во второе равенство b·q 1 вместо a , или подставив в первое равенство a·q 2 вместо b , получим, что q 1 ·q 2 =1 , а учитывая, что q 1 и q 2 – целые, это возможно лишь при q 1 =q 2 =1 или при q 1 =q 2 =−1 . Отсюда следует, что a=b или a=−b (или, что то же самое, b=a или b=−a ).

    Для любого целого и отличного от нуля числа b найдется такое целое число a , не равное b , которое делится на b .

    Таким числом будет любое из чисел a=b·q , где q – любое целое число, не равное единице. Можно переходить к следующему свойству делимости.

    Если каждое из двух целых слагаемых a и b делится на целое число c , то сумма a+b также делится на c .

    Так как a и b делятся на c , то можно записать a=c·q 1 и b=c·q 2 . Тогда a+b=c·q 1 +c·q 2 =c·(q 1 +q 2) (последний переход возможен в силу ). Так как сумма двух целых чисел является целым числом, то равенство a+b=c·(q 1 +q 2) доказывает делимость суммы a+b на c .

    Это свойство можно распространить на сумму трех, четырех и большего количества слагаемых.

    Если еще вспомнить, что вычитание из целого числа a целого числа b представляет собой сложение числа a с числом −b (смотрите ), то данное свойство делимости справедливо и для разности чисел. Например, если целые числа a и b делятся на c , то разность a−b также делится на с .

    Если известно, что в равенстве вида k+l+…+n=p+q+…+s все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

    Допустим, этим членом является p (мы можем взять любой из членов равенства, что не повлияет на рассуждения). Тогда p=k+l+…+n−q−…−s . Выражение, получившееся в правой части равенства, делится на b в силу предыдущего свойства. Следовательно, число p также делится на b .

    Если целое число a делится на целое число b , то произведение a·k , где k – произвольное целое число, делится на b .

    Так как a делится на b , то справедливо равенство a=b·q , где q – некоторое целое число. Тогда a·k=(b·q)·k=b·(q·k) (последний переход осуществлен в силу ). Так как произведение двух целых чисел есть целое число, то равенство a·k=b·(q·k) доказывает делимость произведения a·k на b .

    Следствие: если целое число a делится на целое число b , то произведение a·k 1 ·k 2 ·…·k n , где k 1 , k 2 , …, k n – некоторые целые числа, делится на b .

    Если целые числа a и b делятся на c , то сумма произведений a·u и b·v вида a·u+b·v , где u и v – произвольные целые числа, делится на c .

    Доказательство этого свойства делимости аналогично двум предыдущим. Из условия имеем a=c·q 1 и b=c·q 2 . Тогда a·u+b·v=(c·q 1)·u+(c·q 2)·v=c·(q 1 ·u+q 2 ·v) . Так как сумма q 1 ·u+q 2 ·v является целым числом, то равенство вида a·u+b·v=c·(q 1 ·u+q 2 ·v) доказывает, что a·u+b·v делится на c .

На этом закончим обзор основных свойств делимости.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Определение. Говорят, что число а делится на число в, если существует такое число c Î N 0 , что а = в · с.

В том случае, когда а делится на в пишут: а в. Читают: «а делится на в »; «а кратно в »; «в – делитель а ». Например, 12 делится на 6, так как существует такое с = 2, что 12 = 6 · 2, иначе 12 6.

Замечание . Записи и а : в не равносильны. Первое обозначает, что между числами а и в имеет место отношение делимости (возможно нацело число а разделить на число в ). Второе – есть обозначение частного чисел а и в .

Отношение делимости обладает рядом свойств.

1°. Нуль делится на любое натуральное число, т.е.

(" в Î N ) .

Доказательство. 0 = в · 0для любого в, отсюда по определению следует, что 0 в .

2°. Ни одно натуральное число не делится на нуль, т.е. ("а Î N ) [а 0].

Доказательство (от противного). Пусть существует c Î N 0 , такое, что а = 0· с, но по условию а ≠ 0,значит ни при каком с это равенство не выполняется. Значит, наше предположение о существовании с было неверным и а 0.

3°. Любое целое неотрицательное число делится на единицу, т.е.

("а Î N ) [а 1].

Доказательство. а = 1· а => а 1.

4°. Любое натуральное число делится само на себя (рефлексивность), т.е.("а Î N ) [а а ].

Доказательство. а = а · 1Þ а а.

5°. Делитель в данного натурального числа а не превышает этого числа, т.е. (а в Ù а > 0) Þ (а в ).

Доказательство. Так как а в, то а = в · с, где c Î N 0 . Определим знак разности а в.

а в = вс в = в (с – 1),поскольку а > 0, то с ≥ 1, следовательно, в (с – 1) ≥ 0,значит а в ≥ 0 Þ а в .

6°. Отношение делимости антисимметрично, т.е.

("a, в ÎN 0 )[(a в Ùв а ) Þ а = в ].

Доказательство.

1 случай. Пусть а > 0, в > 0,тогда имеем:

(по свойству 5°). Значит, а = в .

2 случай. Пусть хотя бы одно из чисел а или в равно 0.

Пусть а = 0, то в = 0по 2°, т.к. иначе в не могло бы делиться на а. Значит а = в.

7°. Отношение делимости транзитивно, т.е.

(" a, в, с Î N 0 ) [(a в Ù в с а с ].

Доказательство. а в Þ ($к )[а = вк ]; в с Þ ($)[в = cℓ ].

а = вк = (сℓ )к = с (ℓк ), ℓк – произведение двух неотрицательных целых чисел и к и потому само является целым неотрицательным, т.е. а с.

8°. Если каждое из чисел а и в делится на с, то их сумма а + в делится на с, т.е. ("a, в, с Î N 0 ) [(a с Ù в с ) Þ (а + в ) с ].

Доказательство, а с Þ а = ск, в с Þ в = cℓ.

а + в = ск + cℓ = с (к + ℓ ), т.к. к + –целое неотрицательное число, значит (а + в ) с.

Доказанное утверждение справедливо и в случае, когда число слагаемых больше двух.

Если каждое из чисел а 1 , ..., а п делится на с, то их сумма а 1 + ... + а п делится на с.

Кроме того, если числа а и в делятся на с, причем а в , то их разность а в делится на с.

9°. Если число а делится на с , то произведение вида ах, где x ÎN 0 , делится на с, т.е. а с Þ (" x Î N 0 )[ax с ].

Доказательство. а с Þ а = ск, но тогда ах = скх = с (к · х ), к, x Î N 0 , значит ах с.

Следствие из 8°, 9°.

Если каждое из чисел а 1 , а 2 , ..., а п делится на с, то каковы бы ни были числа х 1 , х 2 , ... , х n число а 1 х 1 + а 2 х 2 + ... + а n х n делится на с.

10°. Если ас делится на вс, причем с ≠ 0, то а делится на в, т.е. (ас вс Ù с ≠ 0) Þ а в.

Доказательство.

ас = вс · к; ас = (вк ) · с Ù с ≠ 0 Þ а = вк => а в .

Признаки делимости

Встречаются задачи, в которых, не производя деления, требуется установить делится или нет натуральное число а на натуральное число в. Чаще всего такие задачи возникают, когда число а надо разложить на множители. В подобных задачах пользуются признаками делимости. Признак делимости – это предложение, позволяющее ответить на вопрос, делится или нет некоторое число на данный делитель, не производя самого деления.

Применяя признак делимости, делить все-таки приходится, конечно. Из школы хорошо известен признак делимости числа на 3. Делится ли число 531246897 на 3? Для ответа на вопрос определим сумму цифр этого числа 5 + 3 + 1 + 2 + 4 + 6 + 8 + 9 + 7 = 45, т.к. 45 делится на 3, то данное число делится на 3.

Итак, вопрос о делимости данного натурального числа сведен к вопросу о делимости меньшего натурального числа.

Признаки делимости зависят от системы счисления. Рассмотрим некоторые признаки делимости в десятичной системе счисления.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»