Яичниковая система гипоталамуса. Механизм регуляции функции яичника в норме и при гипоталамо-гипофизарной дисфункции. Перемещение нервных клеток в ходе формирования зародыша

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Гипогаламо-гипофизарно-гонадная система

Взаимодействие гормонов (ось ГГЯ выделена фиолетовым)

Гормональная система организма

Ось гипоталамус-гипофиз-яички (гипогаламо-гипофизарно-гонадная система) - это гормонально взаимосвязанная система органов. Семенники (яички) млекопитающих являются местом формирования половых клеток и выработки (Rommerts, 2004). - стероид, который содержит 19 атомов углерода и секретируется семенниками, представляет собой андроген, преобладающий у большинства млекопитающих. Тестостерон играет важную роль в размножении млекопитающих: необходим для поддержания половой функции, развития половых клеток и вторичных половых органов. У взрослых животных он оказывает дополнительное воздействие на мышечную и костную ткани, кроветворные процессы, свертываемость крови, уровень липидов в плазме крови, метаболизм углеводов и белков, психосексуальные и когнитивные функции. Во время формирования пола у плода млекопитающих тестостерон приводит к маскулинизации структур Вольфа и вызывает формирование внешних гениталий в виде мошонки и пениса. Кроме того, повышение уровня тестостерона в период полового созревания стимулирует соматический рост и вирилизацию у мальчиков.

Выработка андрогенов в семенниках регулируется главным образом лютеинизирующим гормоном (ЛГ) , тогда как для формирования половых клеток требуется скоординированное действие фолликулостимулирующего гормона (ФСГ) и высокой внутри-семенниковой концентрации тестостерона, который вырабатывается клетками Лейдига под влиянием ЛГ (Rommerts, 2004). Паракринное взаимодействие между клетками Сертоли и половыми клетками также является важным компонентом регуляции сперматогенеза, хотя точная роль клеток Сертоли в регуляции развития половых клеток плохо понятна.

Функция семенников регулируется с помощью группы механизмов прямой и обратной связи, которые функционируют на уровне гипоталамуса, гипофиза и семенников. Так, волнообразная секреция (гонадотропин-рилизинг гормона) стимулирует секрецию ЛГ и ФСГ, которая в свою очередь регулируется путем цепи обратной связи с участием половых гормонов, включая половые стероиды, а также ингибин и активин.

Тестостерон может превращаться в под влиянием . Преимущественно эстрогены, а не тестостерон подавляют ось гипоталамус-гипофиз-яички и снижают секрецию эндогенного тестостерона при введении экзогенных препаратов.

Секреция гонадолиберина гипоталамическими нейронами

Миграция нейронов, продуцирующих гонадолиберин, в процессе развития плода. Нейроны, продуцирующие гонадолиберии, происходят из области обонятельной пластинки (Schwanzel-Fukuda, Pfaff, 1989)и мигрируют вдоль обонятельных нервов в передний мозг и затем в место своего окончательного расположения в гипоталамусе. Такая упорядоченная миграция гонадолиберинпродуцирующих нейронов требует скоординированного действия молекул, определяющих направление адгезионных белков, таких, как продукт гена KALIG-1 и рецептор роста фибробластов, а также ферментов, которые помогают нейрональным клеткам прокладывать свой путь в межклеточном пространстве. Мутация любого из этих белков может воспрепятствовать процессу миграции и привести к возникновению дефицита гонадолиберина. У группы пациентов нарушение такой онтогенетической миграции гонадолиберинпродуцирующих нейронов в их окончательное место локализации в гипоталамусе приводит к заболеванию, которое носит название идиопатического гипогонадотропного гипогонадизма, которое характеризуется дефицитом гонадолиберина и нарушением секреции гонадотропина гипофизом (Legouis et al., 1991).

Гипоталамус как интегрирующий центр мужской репродуктивной системы является интегрирующим центром репродуктивной системы и координирует регуляторные сигналы из высших центров и сигналы обратной связи из гонад (Knobil, 1980; Crowley et al., 1991). В гипоталамус поступает информация из центральной нервной системы, которая отражает влияние эмоций; стресса, света, обонятельных стимулов, температуры и других внешних факторов. Сигналы обратной связи от гонад включают стероидные гормоны (тестостерон и эстрадиол) и белковые гормоны (ингибин и активин).

Регуляция ЛГ и ФСГ волнообразной секрецией гонадолиберина. Гонадолиберин представляет собой главный регулятор секреции гонадотропина и увеличивает секрецию ЛГ и ФСГ клетками гипофиза как in vitro, так и in vivo. Волнообразный характер секреции гонадолиберина имеет важное значение для поддержания нормальной секреции ЛГ и ФСГ гипофизом (Belchetz et al., 1978; Knobil, 1980; Shupnik, 1990; Crowley et al., 1991; Weiss et al., 1992). Непрерывное введение гонадолиберина или применение длительно действующих агонистов гонадолиберина приводит к снижению секреции ЛГ и ФСГ - явлению, известному как негативная регуляция(Belchetz et al., 1978; Knobil, 1980). Xaрактер секреции гонадолиберина (амплитуда и частота секреторных выбросом) определяет количественный и качественный состав сскретируемых гонадотропинов (Belchetz et al., 1978; Haiscnleder et al., 1988, 1991; Kim ct al., 1988a, 1988b; Yuan et al., 1988; Shupnik, 1990; Weiss ct al., 1992). Заметное увеличение частоты выбросов гонадолиберина также приводит к утрате чувствительности гонадотропных клеток и последующему уменьшению секреции ЛГ и ФСГ (Belchetz et al., 1978; Merccr et al., 1988; Shupnik, 1990). Электрофизиологическая активность гипоталамических нейронов, продуцирующих гонадолиберин, взаимосвязана с его периодическими секреторными выбросами.

Периодическое применение гонадолиберина индуцирует транскрипцию гена LH-р in vitro (Wicrman ct al., 1989; Shupnik, 1990; Weiss ct al., 1992). Непрерывное введение гонадолиберина усиливает транскрипцию только а-гена, но не генов Р-субъединицы ЛГ или ФСГ (Haiscnleder ct al., 1988). Периодическое применение гонадолиберина также изменяет полиаденилиронание мРНК составляющей ЛГ (Weiss ct al., 1992). Частота стимуляции гонадолиберином имеет важное значение для дифференциальной регуляции генов LH-Р и FSH-бета (Haiscnlcdcrct al., 1988). Болес высокая частота усиливает a-гены и LH-бета, a более низкая - FSH-бета, что стало основанием для предположения о том, что изменения частоты выбросов гонадолиберина могут быть одним из механизмов регуляции выработки двух функционально различных гонадотропинов с помощью одного гипоталамического рилизинг-гормона (Haiscnlcdcr et al., 1988). Непрерывная инфузия гонадолиберина или применение агониста гормона приводит к снижению уровня мРНК LH-p, в то время как уровень мРНК LH-a остается повышенным (Haiscnlcdcr ct al., 1988; Kim ct al., 1988a. 1988b; Yuan ct al.. 1988).

Значительная часть информации в отношении физиологии секреции гонадолиберина была получена при исследовании волнообразного характера изменений уровня ЛГ и ФСГ у мужчин и женщин в норме, а также при изучении эффектов гормонзамещающей терапии с использованием гонадолиберина у больных с идиоматическим гипогонадотронпым гипогонадизмом (Urban ct al., 1988; Crowley ct al., 1991). Исследования таких пациентов с гипоталамическим дефицитом гонадолиберина показывают, что периодическое внутривенное введение этого гормона в количестве 25 нг-кг"1 позволяет воспроизвести нормальную волнообразную секрецию ЛГ со всеми се особенностями (Crowley ct al., 1991). Пиковый уровень гонадолиберина после внутривенного введения такой дозы гормона (500- 1000 пг-мл4) напоминает тот, который можно обнаружить у приматов в случае прямого забора крови из портальной системы гипофиза (Crowley ct al., 1991). У мужчин с идиоматическим гипогонадотрониым гипогопадизмом оптимальный интервал между повышениями уровня гонадолиберина составил 2 ч (Crowley et al., 1991). Увеличение частоты пульсов гонадолиберина ведет к прогрессивному снижению чувствительности к гонадолиберину ЛГ-продуцируюших нейронов (Rebar et al., 1976). Снижение частоты пульсов гонадолиберина или увеличение интервала между ними повышает амплитуду последующего секреторного выброса ЛГ. Существует линейная зависимость между логарифмом дозы пульса гонадолиберина и количеством секретируемых ЛГ, ФСГ и свободной а-составляющей (Spratt et al., 1986; Whitcomb et al., 1990). У взрослых мужчин амплитуда повышения уровня ЛГ в ответ на гонадолиберии значительно превышает амплитуду повышения уровня ФСГ.

Интенсивный забор крови у здоровых мужчин и женщин выявил обширный набор характеристик волнообразного изменения уровня ЛГ (Urban et al., 1988). Средние характеристики показателей колебаний уровня ЛГ у мужчин, по данным одного из недавних исследований (Urban ct al., 1988), выглядят следующим образом; интервал между секреторными выбросами 55 мин, продолжительность пиков ЛГ 40 мин, амплитуда пиков ЛГ 37 % от исходного уровня (увеличение на 1,8 mLU-мл-1)- Значительная вариабельность параметров изменений уровня ЛГ у здоровых мужчин и женщин в норме обусловливает необходимость предосторожностей при интерпретации небольших отклонений в частоте и амплитуде колебаний гормона. Частота забора крови и подход, используемый для количественной оценки параметров колебаний уровня гормона, могут оказывать значительное влияние на вероятность их ошибочной оценки (Urban et al., 1988).

Влияние гонадолиберина на гонадотропные клетки осуществляется посредством их связывания со специфическими мембранными рецепторами, которое приводит к агрегации рецепторов и кальцийзависимому выделению ЛГ (Conn ct al., 1981, 1982).

Секреция гонадотропина в гипофизе

Функциональное строение и развитие гипофиза

Обширные данные иммуноцитологических исследований свидетельствуют о том, что секреция ЛГ и ФСГ в гипофизе происходит в клетках одного типа (Moricrty, 1973; Kovacs ct al., 1985). Гонадотропы - клетки, секретирующие ЛГ и ФСГ, составляют примерно 10 - 15 % от общего количества клеток аденогипофиза () (Moricrty, 1973; Kovacs et al., 1985) и располагаются рассеянно по всему аденогипофизу вблизи кровеносных капилляров. Они легко обнаруживаются в гипофизе плода и неполовозрелых особей (Childs ct al., 1981), однако их количество до момента полового созревания остается небольшим. Кастрация приводит к увеличению количества, а также размера гонадотропных клеток. Клетки аденогипофиза происходят от общих мультипотентных клеток или клеток-предшественников. Генетический анализ мутаций, взаимосвязанных с нарушениями функции гипофиза, возникающими в процессе развития организма, позволили обнаружить молекулярные механизмы развития гипофиза и выделения отдельных клеточных линии (Ingraham et al., 1988; Scully, Rosenfield, 2002). Развитие эмбриона гипофиза и различных типов его клеток управляется скоординированной во времени экспрессией ряда транскрипционных факторов, содержащих гомеодомен. Три гомеобокссодержащих гена Lbx3, Lbx4 и Titfl играют важную роль в раннем органогенезе (Scully, Rosenfeld, 2002). Для клеточной специализации и пролиферации дифференцированных клеток необходима экспрессия транскрипционных факторов Pitl и Propl: Pitl содержит в своем составе POU-снецифический и ДНК-связывающий POU-гомеокомпонент (Scully, Rosenfeld, 2002). Ген Propl кодирует транскрипционный фактор с одним ДНК-связывающим компонентом. Мутации Pitl ассоциированы с дефицитом соматотропного гормона (СТГ), тиреотропного гормона (ТТГ) и пролактина, а мутации Propl помимо дефицита СТГ, пролактина и ТСГ связаны с недостатком ЛГ и ФСГ. Экспрессии Propl и Pitl предшествует экспрессия гена HESX1, мутации в котором связаны с септоптической дисплазией и пангипопитуитаризмом (Parks et al., 1999).

Биохимическое строение и молекулярная биология ЛГ и ФСГ

Семейство гипофизарных гормонов, имеющих гликопротеидную природу, включает ЛГ, ФСГ, ТСГ и (ХГ) (Sairam, 1983; Ryan ct al., 1987; Gharib ct al., 1990). Все эти гормоны являются гетеродимерами, состоящими из а- и P-составляющих. Первичная последовательность р-составляющих ЛГ, ФСГ, ТТГ и ХГ различных видов практически идентична, биологическая специфичность гормонов определяется разнородными P-составляющими. Значительная гомология между двумя составляющими свидетельствует об их общем происхождении от общего предкового гена. Каждая субъединица в отдельности не обладает биологической активностью, они могут оказывать какое-либо воздействие только после формирования гетеродимера. В составе гетеродимера они соединяются дисульфидными связями, расположение цистеиио-вых остатков имеет большое значение для правильной укладки и формирования трехмерной структуры гликопротеида (Sairam, 1983; Ryan et al., 1987; Gharib et al., 1990); a-составляющая ЛГ содержит две углеводные цепи, связанные с остатками аспарагина, тогда как в состав p-составляющая их может входить одна или две (табл. 21.1) (Baezinger, 1990); P-составляющая ХГ, кроме того, содержит О-связанные олигосахариды, которых нет в составе димера ЛГ (Cole ct al., 1984). Несмотря на то что свободные несвязанные а-субъединицы сскрстируются гипофизом в кровяное русло, принято считать, что секреция свободных P-составляющих таким путем практически не происходит. Возникновение хорионического гонадотропина как самостоятельного гонадотропина в ходе эволюционного развития произошло сравнительно недавно (Komfeld, Kornfcld, 1976; Fiddcs ct al., 1984). В отличие от ЛГ, который можно обнаружить в гипофизе значительного числа видов, ХГ найден только в плаценте некоторых видов млекопитающих, а именно у лошадей, бабуинов и человека (Fiddcs et al., 1984); а- и p-составляющие ЛГ и ФСГ кодируются различными генами (Fiddes et al., 1984). Кластер генов p-составляющие ЛГ-ХГ у человека включает семь ХГ-подобных генов, один из которых - ген liLH-бета (Fiddes ct al., 1984). Общая организация гена р-субъединицы ЛГ, состоящего из четырех экзонов и трех нитронов, подобна строению генов р-субъединиц других гликопротеидных гормонов.

Регуляторная роль ЛГ

Секреция тестостерона клетками Лейдига находится под контролем ЛГ, который связывается с рецепторами, сопряженными с G-белком, на клетках Лейдига и активирует сигнальный путь циклического аденозинмонофосфата (цАМФ). Рецептор лютеинизирующего гормона-хориопического гонадотропина (ЛГ-ХГ-рецептор) характеризуется гомологией с другими рецепторами, сопряженными с G-белком, такими, как родопсин, адренергические, ФСГ- и ТТГ-рецепторами(McFarland et al., 1989; Sprengel et al., 1990). Рецепторы, сопряженные с G-белком, представляют собой трансмембранные белки, обладающие общим структурным мотивом, включающим семь проникающих через мембрану доменов. Эти семь доменов расположены на карбоксильном конце молекулы, который содержит также небольшой участок с цитоплазматической локализацией. В его последовательности находятся несколько сериновых и треониновых остатков, которые могут подвергаться фосфорилированию (McFarland et al., 1989; Sprengel et al., 1990).

Лютеииизирующий гормон стимулирует активность фермента, расщепляющего боковые цепи, (side-chain cleavage enzyme) (Simpson, 1979; Mori, Marsh, 1982) - фермента, ассоциированного с цитохромом Р450, который катализирует превращение {холестерина в прегненолон, ограничивающий скорость этапа биосинтеза тестостерона. Этот гормон увеличивает поступление холестерина к ферменту, расщепляющему боковые цепи, таким образом, увеличивая эффективность реакции превращения холестерина в прегненолон (Simpson, 1979; Mori, Marsh, 1982). Регуляторный белок стероидогенеза (steroidogenesis acute regulatory protein, STAR) делает холестерин доступным для комплекса, расщепляющего боковые цепи, и регулирует скорость биосинтеза тестостерона (Clark, Stocco, 1996). Периферический рецептор бензодиазипина, митохондриальный белок, связывающий холестерин, который принимает участие в транспорте холестерина и представлен в большой концентрации на внешней митохондриальной мембране, также предлагается на роль активного регулятора процесса стероидогеиеза. К долговременным эффектам ЛГ относятся стимуляция экспрессии генов и синтеза ряда ключевых ферментов пути биосинтеза стероидов, включая фермент, расщепляющий боковые цепи, 3-р-гидроксистероид дегидрогеназу, 17-а-гидроксилазу и 17,20-лиазу (Simpson, 1979; Mori, Marsh, 1982). Несмотря на то что ЛГ активирует также сигнальный путь фосфолипазы С, остается неясным, насколько это имеет важное значение для ЛГ-опосредованной стимуляции выработки тестостерона. Кроме того, в контроле стероидогеиеза в клетках Лейдига принимают участие инсулиноподобный фактор роста I; белки, связывающие инсулиноподобный фактор роста; ингибины, активины, трансформирующий фактор роста-p, эпидермальный фактор роста, интсрлейкин-1, основной фактор роста фибробластов, гонадолиберии, вазопрессин и еще одна группа плохо охарактеризованных митохондриальных белков.

Регуляторная роль ФСГ у самцов млекопитающих

ФСГ связывается со специфическими рецепторами клеток Сертоли и стимулирует выработку ряда белков, в числе которых ингибинподобные пептиды, трансферрин, андрогенсвязывающий белок, рецептор андрогенов и 7-глутамилтранспептидаза. Вместе с тем роль ФСГ в регуляции процесса сперматогенеза остается малопонятной. Преобладает точка зрения, согласно которой ЛГ действует на клетки Лейдига, стимулируя выработку в большом количестве тестостерона (Boccabella, 1963; Steinberger, 1971; Sharpe, 1987). Затем тестостерон влияет на сперматогонии и сперматоциты, инициируя процесс их мейотического деления. Предполагается, что ФСГ необходим для спермогенеза, т. е. процесса созревания, в котором спсрматиды развиваются в зрелые сперматозоиды. Однако данные экспериментов на животных и исследований пациентов с идиопатическим гипогонадотропным гипогонадизмом после лечения гонадотропинами показывают, что ФСГ играет более сложную роль в поддержании количественно нормального сперматогенеза.

У крыс и нечеловекообразных приматов тестостерон сам по себе может поддерживать сперматогенез в случае применения после удаления гипофиза или перерезания ножки гипофиза (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Однако, если тестостерон применяется спустя некоторое время (через несколько недель или месяцев) после подобной операции, его эффективность в отношении восстановления сперматогенеза существенно снижается. Сперматогенез, который поддерживается у самцов грызунов и нечеловекообразных приматов с удаленным гипофизом путем введения тестостерона, является качественно, но не количественно нормальным (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Более эффективной для повторной инициации сперматогенеза по сравнению с тестостероном оказалась его комбинация с ФСГ (Stager et al., 2004). Таким образом, несмотря на то что ЛГ сам по себе может поддерживать или повторно инициировать сперматогенез, для количественно нормальной продукции спермы необходим ФСГ.

У мужчин, у которых дефицит ЛГ и ФСГ возник в препубертатном возрасте, ЛГ или хорионический гонадотропин человека сами по себе не могут инициировать сперматогенез (Bardin et al., 1969; Matsumoto et al., 1983, 1984; Finkel etal., 1985). Однако если дефицит гонадотропинов развивается после того как у пациента произошло половое созревание, ЛГ и чХГ могут самостоятельно инициировать повторно качественно нормальный сперматогенез (Finkel et al., 1985). Таким образом, ФСГ необходим для инициации процесса сперматогенеза, но после его начала для его поддержания достаточно высоких доз тестостерона. Этот факт позволяет предполагать, что ФСГ может принимать участие в определенном виде “программирования", происходящем в период полового созревания, после чего ЛГ может самостоятельно поддерживать процессы развития и созревания половых клеток.

Концентрация андрогенов в семенниках намного выше, чем в сыворотке крови. Однако касательно высокого уровня тестостерона в семенниках существуют достаточно разноречивые мнения (Sharpe, 1987; Sharpe etal., 1988; Stager etal., 2004). Например, стимулирующий эффект экзогенного тестостерона па сперматогенез у крысы не связан с пропорциональным увеличением его внутрисемеиникового уровня. У взрослых обезьян с удаленным гимофизом или после введения антагоиистов гонадолиберина, которым вводили тестостерон, наблюдается прямая зависимость между уровнем тестостерона в семенниках и сперматогенезом (Stager et al., 2004). Метод посмертного сбора тканей семенников влияет на оценки внутрисеменииковой концентрации тестостерона (Stager et al., 2004). Таким образом, взаимосвязь между внутрисеменниковой концентрацией тестостерона, ФСГ и сперматогенезом остается малопонятной. Рецепторы андрогенов обнаруживаются на клетках Сертоли и перитубулярных клетках, на некоторых клетках Лейдига и эндотелиальных клетках небольших артериол. В то же время нам неизвестно о наличии рецепторов андрогенов на половых клетках. Принято считать, что влияние андрогенов на сперматогенез опосредовано через клетки Сертоли, хотя возможно, что тестостерон может также непосредственно действовать на развитие половых клеток. Тестостерон влияет па секрецию белков как сферическими спсрматидами, так и клетками Сертоли. Максимальная экспрессия рецепторов андрогенов наблюдается в стадии VI-VII сперматогенного эпителия, тестостерон регулирует апоптоз половых клеток в зависимости от стадии их развития.

Для трансдукции сигнала ФСГ к половым клеткам требуется участие клеток Сертоли, поскольку рецепторы ФСГ имеются на этом типе клеток, но отсутствуют на половых клетках. Рецептор ФСГ также представляет собой полипептид, сопряженный с G-белком, состоящий из гликозилированиого внеклеточного домена, который соединяется с С-концевым участком, содержащим 7 трансмембранных участков (Sprengel et al., 1990).

Обратная связь в регуляции секреции лютеинизирующего и фолликулостимулирующего гормонов

Обратная регуляция с помощью тестостерона

Тестостерон занимает важное место в регуляции секреции гонадотропинов у самцов посредством обратной связи. У ряда экспериментальных животных после кастрации резко повышается уровень ЛГ и постепенно ФСГ (Yamamoto et al., 1970; Badger et al., 1978). После кастрации повышается уровень мРНК ЛГ-а и I (Gharib et al., 1986) и ФСГ-р (Gharib et al., 1987), при этом изменения содержания ФСГ-а выражены в гораздо меньшей степени.

Посткастрационное повышение содержания ЛГ в сыворотке крови и уровня мРНК ЛГ-р обусловлено как изменением количества гонадотропных клеток, так и гипертрофией отдельных гонадотропов (Childs et al., 1987). Введение тестостерона, начатое сразу после кастрации или вскоре после нее, может ослаблять посткастрационный рост уровня мРНК ЛГ-а и -р, a также уровня ЛГ в сыворотке крови, однако незначительно влияет на уровень мРНК ФСГ-р (Gharib et al., 1986, 1987).

Тестостерон оказывает комплексное влияние на секрецию и синтез ФСГ

Суммарный эффект in vivo применения тестостерона у мужчин в норме заключается в снижении уровня ФСГ в сыворотке крови (Swerdloff et al., 1979; Winters et al., 1979). Однако прямое воздействие тестостерона на выделение ФСГ на уровне гипофиза стимулирующее (Steinberg, Chowdhury, 1977; Bhasin et al., 1987; Gharib et al., 1987). В культуре изолированных клеток гипофиза тестостерон увеличивает выделение ФСГ в среду (Steinberg, Chowdhury, 1977). Это сопровождается увеличением уровня мРНК ФСГ-р в 3-4 раза (Gharib et al., 1990). У интактных самцов мыши при блокировании действия гонадолиберина путем применения его антагониста тестостерон повышает уровень ФСГ дозозависимым образом (Bhasin et al., 1987). Показано, что у кастрированных животных, которым вводили антагонист гонадолиберина, введение тестостерона в постепенно увеличивающихся дозах сопровождается ростом уровня ФСГ в сыворотке крови. Эти данные показывают, что стимулирующий эффект тестостерона на уровень ФСГ в сыворотке крови опосредован не столько воздействием на гонадальный ингибитор ФСГ, сколько непосредственным влиянием на уровне гипофиза. Тестостерон повышает уровень мРНК ФСГ-р, но не ЛГ-р. В то же время у интактных самцов животных тестостерон подавляет стимулированную гонадолиберином секрецию ФСГ, что в результате приводит к снижению уровня ФСГ в сыворотке крови.

При введении человеку и крысам тестостерон в норме подавляет секрецию ЛГ (Santen, 1975; Matsumoto et al., 1984; Veldhuis et al., 1984). Такие подавляющие эффекты проявляются преимущественно на гипоталамическом уровне - это заключение подтверждает факт снижения тестостероном частоты секреторных выбросов ЛГ у мужчин с нормальными гонадами (Matsumoto, Bremncr, 1984; Schcckter et al., 1989; Finkclstcin et al., 1991a). Андрогены не оказывают прямого воздействия на уровень мРНК ЛГ-р в монослойной культуре клеток гипофиза крысы. Сходным образом у самцов крыс после введения антагониста гонадолиберина введение тестостерона, в постепенно увеличивающихся дозах, приводит только к росту уровня мРНК ФСГ-р, но не мРНК ЛГ-р (Bhasin et al., 1987). В отличие от крыс у людей, больных идиоматическим гипогонадотропным гипогонадизмом, амплитуда колебаний ЛГ, вызванных и поддерживаемых периодическим введением гонадолиберина, уменьшается после введения тестостерона, что свидетельствует о том, что у человека тестостерон оказывает дополнительное воздействие на уровне гипофиза, ослабляя секрецию ЛГ в ответ на стимуляцию гонадолиберином (Matsumoto et al., 1984; Schekter et al., 1989; Finkelstein et al., 1991a). Эти исследования показывают, что у мужчин тестостерон или один из его метаболитов ингибируют секрецию гонадотропина на уровне гипофиза и гипоталамуса.

Ингибирующий эффект тестостерона опосредован непосредственно тестостероном и опосредованно его метаболитами - эстрадиолом и дигидротестостероном. Применение ингибиторов ароматазы или 5-а-редуктазы сопровождается увеличением концентрации ЛГ, что согласуется с представлениями о роли эстрадиола и дигидротестостерона в усилении ингибирующего воздействия тестостерона в цепи обратной связи (Santen, 1975; Finkelstein et al., 1991b; Gormley, Rittmaster, 1992). Однако применение не поддающегося ароматизации андрогена дигидротестостерона также подавляет секрецию ЛГ в соответствии с предположением о том, что а

3. Гипоталамо-гипофизарно-яичниковая регуляторная система

Менструальный цикл в целом, с характерными циклическими изменениями в яичниках и эндометрии находится под контролем тесно взаимосвязанной эндокринологической сети, связывающей гипоталамус, гипофиз и яичники. Регуляция в этой системе идет по механизму обратной связи.

Люлиберин, секретируемый nucleus arcuatus в области медиобазального гипоталамуса, транспортируется по аксоном нейронов в капиллярную сеть системы воротной вены в гипофизарной ножке и, таким образом, с током крови достигает гонадотропных клеток передней доли гипофиза. Люлиберин взаимодействует со специфическими поверхностными рецепторами. Это стимулирует синтез и накопление ФСГ и ЛГ во внутриклеточных секреторных гранулах, равно как и их освобождение.

Освобождение люлиберина, так же как и последующее высвобождение ЛГ и ФСГ происходит в виде импульсов и регулируется нейротрансмиттерами. Норадренолин, например, стимулирует секрецию люлиберина, в то время как дофамин, кортиколиберин, окситоцин, вазопрессин, серотонин и эндогенные опиоиды обладают ингибиторным эффектом.

Индивидуальная частота и амплитуда импульсных выбросов люлиберина и ФСГ/ЛГ являются одной из функций менструального цикла. В течение фолликулярной фазы, например, импульсная частота освобождения ЛГ находится в диапазоне 60–120 в минуту. В течение лютеиновой фазы данная частота прогрессивно замедляется. Наибольшие интервалы между секреторными импульсами ЛГ наблюдаются незадолго до лютеиновой регрессии. Существует связь между концентрацией прогестерона в сыворотке крови и замедлением частоты секреторных импульсов ЛГ. С началом падения уровня прогестерона, примерно с 23 дня цикла, т.е. одновременно с началом лизиса желтого тела, частота импульсов секреции ЛГ прогрессивно растет.


Еще раз: люлиберин контролирует синтез и освобождение ФСГ и ЛГ. Циклические вариации соотношения ФСГ/ЛГ являются следствием различий чувствительности гипофиза к люлиберину, это определяется половыми стероидами и фолликулярным ингибином.

Гонадотропины ФСГ и ЛГ являются гормонами второго порядка. В органе-мишени, яичниках, их активность проявляется двояко: стимуляция роста фолликулов и стимуляция секреции половых стероидов. Механизмом «короткой» обратной связи ФСГ и ЛГ контролируют свою собственную секрецию. Яичниковые половые стероиды, в свою очередь, оказывают модулирующий эффект на гормональную систему гипоталамус-гипофиз-яичники посредством длинной связи. Таким образом, они вносят вклад в синхронизацию гормональных профилей на протяжении менструального цикла.

Эстрогены и прогестерон имеют двойную функцию: они могут выступать и как ингибиторы и как стимуляторы. Например, в конце фолликулярной фазы эстрадиол стимулирует синтез, везикулярное накопление и освобождение ЛГ, по всей видимости, усиливает освобождение ЛГ и ФСГ, вызванное эстрадиолом. Позже, во второй половине цикла, после созревания желтого тела, прогестерон начинает оказывать ингибиторное воздействие.

Молекулярно-биологические аспекты стероид-опосредованной обратной связи являются областью, полной неразрешенных проблем. После того, как в гипоталамусе были обнаружены рецепторы половых стероидов, появилась концепция, в соответствии с которой в основе данного механизма лежит регуляция синтеза нейротрансмиттеров, которые косвенно воздействуют на освобождение люлиберина. Более того, предполагается, что половые стероиды активируют люлиберин-разрушающие пептидазы.

Помимо этого, половые стероиды и фолликулярный ингибин воздействует на гипофизарно-яичниковую систему, селективно ингибируя секрецию ФСГ.

Необходимы дальнейшие исследования с целью выяснения модулирующего влияния СССГ и КСГ, связывающих половые стероиды, на регуляторную связь, существующую между гипоталамусом, гипофизом и яичниками. То же относится к метаболической способности печени и накопительным и метаболическим свойствам периферических органов-мишеней половых стероидов.

4. Овариальный цикл и регуляция биосинтеза половых стероидов в яичниках

Из 7 миллионов оогоний, примордиально присутствующих в женском организме, примерно 300–400 за период половой зрелости женщины, развиваются от стадии примордиального фолликула до полностью зрелой яйцеклетки. Примордиальный фолликул состоит из ооцита и максимум 10 гранулезных клеток с общим размером 0,1 мм. Нижеследующие стадии развития фолликула называются: стадия первичного, вторичного и третичного фолликула. Третичный фолликул в преовуляторную стадию содержит примерно 50–60 миллионов гранулезных клеток, заполненную жидкостью фолликулярную полость, называемую антрум, а также слой клеток оболочки, охватывающей гранулезные клетки.


Созревшая и готовая к овуляции яйцеклетка имеет диаметр примерно 20 мм.

В течение овариального цикла, как правило, только один примордиальный фолликул развивается до стадии полного созревания. По мнению многих исследователей, главной причиной подобного состояния вещей является регуляторная роль гормонального фона. Большинство неселективно развивающихся примордиальных фолликулов претерпевают атрезию. Селективный стимул, определяющий какой именно фолликул должен достигнуть зрелости, по всей видимости, берет свое начало в лютеиновой фазе предыдущего менструального цикла в форме гормонального сигнала. Подъем концентрации ФСГ, наблюдаемый в конце цикла одновременно с падением уровня прогестерона, вероятно, является ключевым инструментом выбора очередного примордиального фолликула и сенсибилизации его к дальнейшим гормональным импульсам.

Секреция эстрадиола повышается с началом созревания фолликула. Вслед за этим запускается нижеследующие механизмы: эстрадиол совместно с ФСГ индуцирует рецепторы, расположенные на поверхности гранулезных клеток. Результатом этого становится рост связывающей способности, что ведет к повышению чувствительности фолликулярного аппарата к ФСГ, вызывая тем самым дополнительный рост. Далее ФСГ активирует ароматазу, присутствующую в гранулезных клетках, тем самым запуская процесс превращения андрогенов в эстрадиол. На этой стадии эволюции созревающий фолликул, содержащий фолликулярную жидкость, богат ФСГ и эстрадиолом. Концентрация гормонов в фолликулярной жидкости является необходимым и достаточным для полноценного роста фолликула и его созревания, несмотря на то, что уровень эстрадиола, нарастающий вплоть до конца фолликулярной фазы, вызывает прогрессивную блокаду гипофизарной секреции ФСГ. Остальные фолликулы, достигшие только ранней стадии эволюции, лишаются ФСГ-стимуляции и погибают.


От начала до середины фолликулярной фазы гранулезные клетки практически лишены специфических рецепторов к ЛГ. Таким образом, эффект ЛГ на этой стадии менструального цикла ограничивается воздействием только на клетки внутренней оболочки стенки фолликула. Под действием ЛГ из эфиров холестерина образуются андрогены, которые транспортируются в гранулезные клетки в качестве предшественников эстрадиола.

Под действием ФСГ, к концу первой половины цикла, происходит усиленная индукция рецепторов ЛГ, расположенных на поверхности гранулезных клеток.

Решающее значение для процесса нормального созревания фолликула имеет пропорция стимулированных ЛГ андрогенов и стимулированного ФСГ эстрадиола. Избыточное количество андрогенов ведет к атрезии, и только сбалансированное доминорование эстрогенной стимуляции позволяет фолликулу полностью созреть.

Массированный выброс ЛГ, основанный на преовуляторном пике, вызывает лютеинизацию гранулезных клеток и переводит биосинтез стероидов на продукцию прогестерона. Одновременно, примерно 28–36 часов спустя массированного выброса ЛГ, инициируется овуляция. В дополнение к синтезу прогестерона, желтое тело также секретирует эстрадиол и андрогены.

Продолжительность синтеза прогестерона, равно как и его высвобождение на протяжении лютеиновой фазы, находятся в прямой зависимости от количества рецепторов к ЛГ, максимальное число которых наблюдается на 22 и 24 дни цикла. После начала менструального кровотечения ЛГ-рецепторы в желтом теле не определяются. В регуляторный механизм также вовлекается и ингибитор связывания ЛГ; присутствующий в клетках желтого тела и фолликулярной жидкости.

Не вызывает сомнений, что полноценное функционирование желтого тела может иметь место только в случае оптимальной гормональной стимуляции преовуляторного доминантного фолликула. Концентрация рецепторов к ЛГ является наиболее важным показателем нормального развития желтого тела, однако, поскольку индукция рецепторов ЛГ опосредуется ФСГ, транзиторное подавление ФСГ в течение фолликулярной фазы цикла может автоматически привести к снижению уровней эстрадиола и прогестерона, равно как и к редукции клеточной массы желтого тела. Применительно к клинической практике, главным выводом из вышесказанного может стать то, что лечение недостаточности желтого тела должно проводиться в течение фолликулярной фазы цикла, нежели чем заместительно в течение лютеиновой фазы.

Овуляция, представляющая собою выброс cumulus oophorus, провоцируется сочетанием повышения внутрифолликулярного давления, простагландин-опосредованной активации коллагеназ с последующей частичной деструкцией фиброзных структур стенки фолликула, а также сократительными стимулами.

Гипоталамические гонадотропин-рилизинг-гормоны (GnRH) высвобождают фолликул-стимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ) в передней доле гипофиза. С током крови ЛГ и ФСГ достигают органов размножения (гонад) у мужчин и женщин и управляют их функцией. У мужчины ЛГ стимулирует продукцию тестостерона клетками Лейдига, а ФСГ влияет на функции клеток Сертоли, которые совместно с тестостероном управляют семясозреванием. Тестостерон и высвобожденный из клеток Сертоли гормон ингибин влияют по принципу негативной обратной связи на активность GnRH.

Как уже упоминалось, стресс, активируя CRF, может затормозить ось гонад через GnRH и таким образом способствовать стерильности. Судя по всему, активация CRF у мужчин, индуцированная неконтролируемым и непредвиденным стрессом, нарушает HHGA-функции, вследствие чего, по-видимому, наступает некоторая редукция количества и подвижности сперматозоидов. Далее, представляется, что активное поведение во время стресса за счет активации симпатической нервной системы вызывает вазоконстрикцию тестикулярных кровеносных сосудов (см. прим. 11.1). Кроме того, описывались и нарушения цикла у женщин вследствие стресса. Особенно значимыми представляются длительные требования в сфере достижений, а также изменения условий жизни. Здесь тоже можно считать релевантным физиологическим механизмом активацию гипоталамического CRF, вследствие чего опосредованно нарушается HHGA. Нарушения GnRH-функций наступают также вследствие недостаточной массы тела. Подобные нарушения функций, индуцированные гипоталамусом, были зафиксированы при нервной анорексии. Периоды голодания, встречающиеся у женщин с нервной булимией или устраивающих себе ограниченные диеты, тоже приводят к нарушениям цикла, ановуляции и нарушениям лютеальной фазы. Гипоталамическое снижение продукции GnRH с последующими нарушениями цикла может возникнуть также в результате интенсивных занятий спортом (Hellhammer & Pirke, в печати).

Довольно активно исследовался возможный эффект, который оказывают половые гормоны на эмоции и поведение. Падение уровня эстрогена и прогестерона после родов, кажется, способствует послеродовой дисфории. Отсутствие этих гормонов во время климакса, возможно, является причиной приливов, расстройств сна и изменений настроения. Менее отчетливо фиксируются психотропные эффекты тестостерона.

Распространенность многих психических расстройств (в том числе депрессии, анорексии, шизофрении) среди мужчин и женщин зачастую неодинакова. Это часто интерпретируется как следствие вредных или протективных влияний половых гормонов. Несмотря на впечатляющие данные, однозначных доказательств патогенетического значения этих гормонов до сих пор нет.

Многие считают, что репродуктивная жизнь женщины – все, что связано менструальным циклом, с оплодотворением, с беременностью и с родами – это все, грубо говоря, происходит «внизу живота». Конечно, это не так, и даже если разбираться только с менструальным циклом и менструацией, то можно узнать следующее.

При менструальном цикле происходят периодические изменения во всем организме женщины, начиная с «самого верха», ведь обеспечить зачатие и развитие плода только «низ живота» не в состоянии.

Даже сама менструация – это не просто кровотечение вследствие отторжения ненужного эндометрия. Это результат двухфазного цикла, который регулируется «слаженной игрой» целого оркестра инструментов.

И важнейшую роль в нем играет среднее звено, связывающее подчиненные структуры головного мозга и доводящие эти командные сигналы с применением обратной связи до главной эндокринной железы женских половых органов – яичников. Это так называемая гипоталамо-гипофизарно-яичниковая система.

Но было бы несправедливо рассказать только об этой одной структуре, не затронув «крайних» отделов: ведь есть кое-что, главнее гипоталамуса, и есть структуры, которые находятся в подчинении у яичников. Вместе все эти структуры составляют пять основных уровней регуляции, и благодаря их работе существует человечество. Перечислим их, начиная с самых главных:

  • кора головного мозга;
  • гипоталамус;
  • гипофиз;
  • яичники;
  • матка;
  • другие органы – мишени, которые регулируются половыми гормонами (влагалище, молочная железа).

Рассмотрим кратко, как влияют на женскую репродуктивную функцию эти уровни иерархии, объединенные в одну систему благодаря сложной и многоступенчатой системе обратной связи.

Говоря примитивным языком, именно корой мы «мыслим». Кора головного мозга (по крайней мере, для человека) является самой сложной структурой, известной нам во всем изученном мире. Но это вовсе не значит, что женщина, «подумав», может сознательно задерживать или ускорять менструальный цикл, вызывать овуляцию по желанию, и творить иные чудеса. Роль коры совсем иная.

Кора интегрирует все сигналы из внешнего мира, формирует цельную картину, и помимо нашей воли формирует нейрохимические сигналы, которые представлены нейромедиаторами. Так, известны эндорфины или «гормоны удовольствия» ГАМК – ергическая и серотониновая система, адреналин и норадреналин. Эти сигналы достигают гипоталамуса, и подчиняют его своей воле.

Гипоталамус

Гипоталамические нейроны, выполняя приказы из главного центра, секретируют очень много так называемых рилизинг – факторов, но нас интересует гонадотропин – рилизинг – гормон. Именно с этого вещества, который является «командиром» для гонадотропных гормонов гипофиза, и начинается гипоталамо – гипофизарно – яичниковая «ось».

Как это происходит? Мы видим сложную и сопряженную работу нейромедиаторов: дофамин помогает секретировать гонадотропный рилизинг – фактор, но при этом одновременно влияет на нижележащий уровень – на гипофиз, тормозя синтез пролактина.

Норадреналин помогает в момент овуляции синтезировать и секретировать в кровь гипоталамический рилизинг – фактор, а на серотонин выпадает задача контролировать лютеинизирующий гормон, который тоже вырабатывается в гипофизе, то есть «ниже» гипоталамуса.

Опиаты или энкефалины и эндорфины, гормоны удовольствия», воюют против дофамина, подавляют секрецию лютеинизирующего гормона. Ко всему прочему, в гипоталамусе, первом звене этой системы, кроме рилизинг-либеринов, которые стимулируют работу гипофиза и способствуют высвобождению в кровь его гормонов, вырабатываются еще и статины, которые запрещают активность гипофиза и тормозят выработку его гормонов.

Что касается гонадотропного фактора, который нас интересует, то он медленно выделяется в кровь путем пульсации, которая совершается с частотой примерно 1 выброс каждые час–полтора. У женщин ритм этой секреции гонадолиберина немного меняется: чаще выбросы происходят перед овуляцией, а во вторую, прогестероновую фазу цикла, их частота минимальна.

Гипофиз

Этот небольшой серо–розовый шарик, величиной с крупную горошину, играет исключительно важную роль в нормальной регуляции менструального цикла: он выделяет гонадотропные гормоны – ФСГ или фолликулостимулирующий гормон, и ЛГ или лютеинизирующий гормон. Также из гормонов гипофиза, имеющих отношение к репродуктивной функции, относится пролактин.

Гипофиз является органом, который может выделять гонадотропные гормоны как тонически (постоянно), так и циклически (периодически). В первом случае результатом является такая работа яичников, как постоянный цикл развития фолликулов и синтез эстрогенов. В результате циклического процесса возникает чередование эстрогеновой и прогестероновой фазы и формируется их высокое, пиковое значение перед овуляцией. Что же делают эти гормоны? Вот основные эффекты:

  • ФСГ отвечает за постоянный, поочередный рост и созревание фолликулов, количество которых заложено внутриутробно и за продукцию эстрогенов;
  • ЛГ вызывает образование андрогенов (которые являются предшественниками эстрогенов), помогает фолликулу разорваться, и яйцеклетке выйти. Этот гормон также стимулирует образование прогестерона путем перестройки гранулезных клеток (остатков фолликула после выхода яйцеклетки);
  • Пролактин вызывает подготовку организма к беременности, родам и грудному вскармливанию: вызывает рост молочных желез, стимулирует синтез молока в них, способствует липолизу, или расщеплению жира. Немного снижает кровяное давление, а в высокой концентрации тормозит созревание фолликулов.

Яичники

Яичники – это послушный исполнительный орган, исполняющий волю гипоталамуса и гипофиза, но сам он «отыгрывается» на подчиненных структурах – например, на эндометрии. Задача яичников – производить зрелые яйцеклетки, готовить их к оплодотворению. А для этого необходимо, чтобы вначале созрел фолликул.

Именно это образование является основной структурной и действующей единицей яичников. Всего науке известны четыре типа фолликула, но на самом деле – это разные стадии развития одного и того же фолликула.

Примордиальные фолликулы образуются еще на этапе внутриутробного развития, и в них содержится половинный набор хромосом, так называемый гаплоидный. Они продолжают существовать всю жизнь. Всего в обоих яичниках у девочки к моменту рождения находится около полумиллиона таких первичных зародышевых фолликулов, каждый из которых представляет собой яйцеклетку. Именно примордиальные фолликулы начинают усиленно размножаться и созревать, под влиянием гормонов, которые выделяет гипофиз.

Вначале возникает первичный фолликул, затем вторичный фолликул, и фолликул созревает. Внутри фолликула находится зрелая, готовая к оплодотворению яйцеклетка. Теперь необходим разрыв фолликула и этот процесс тоже контролируется гормонами гипофиза.

Каждая женщина на протяжении одного менструального цикла тратит один фолликул, который постепенно проходит все стадии созревания, включая овуляцию. Нетрудно посчитать, что за весь детородный или фертильный возраст у женщины обычно бывает около 400 менструальных циклов, если даже грубо представить, что каждый цикл длится один месяц. Остальные фолликулы постепенно подвергаются атрезии и не используются. Таким образом, женщина тратит всего лишь 0,1% от заложенных ей природой фолликулов.

После того как произошла овуляция, в действие под влиянием лютеинизирующего гормона вступают клетки, которые раньше составляли мембрану фолликула. Теперь, когда яйцеклетка вышла, эти клетки формируют структуру, которая называется желтым телом.

Желтое тело продуцирует гормон прогестерон, который подготавливает женский организм к беременности. Но в том случае, если оплодотворение не произошло, то желтое тело, проработав «вхолостую», через 2 недели полностью прекращает свою деятельность и исчезает. В том же случае, если наступает беременность, то возникает длительно существующее желтое тело беременности.

Поэтому каждой женщине нетрудно запомнить, что каждый менструальный цикл находит свое отражение в яичниковом цикле, и он состоит из 2 последовательных фаз: фолликулярной и лютеиновой.

Первая фаза начинается сразу после месячных и заканчивается выходом созревшей яйцеклетки или овуляцией. Также фолликулярная фаза называется эстрогеновой, поскольку именно в этот период фолликулы синтезируют гормон эстрадиол, а также другие гормоны, которые и обуславливают женский фенотип.

Вторая фаза — лютеиновая или прогестероновая, является завершающей фазой, и представляет собой подготовку женского организма к беременности, продолжаясь от овуляции и до наступления месячных или до наступления беременности.

Гормоны

Говоря об гипоталамо-гипофизарно-яичниковой оси, нужно помнить, что на каждом из этих этапов идет выработка гормонов, а также ответ нижележащих иерархически подчиненных отделов методом обратной связи вышележащим. Яичник также полностью вписывается в эту иерархию и секретирует три основных типа половых стероидных гормонов.

Это эстрогены, среди которых лидирует эстрадиол, это гестагены, среди которых главным является прогестерон, и мужские половые гормоны или андрогены. В их производстве принимают участие клетки гранулезный мембраны или гранулезы, клетки, которые находятся внутри фолликула и составляют его оболочку, а также желтое тело.

Мы не будем подробно описывать эффекты гормонов, поскольку эти вопросы освещены в соответствующих статьях. Рассмотрим тот орган, который лежит за пределами яичниковой оси и находится еще ниже в иерархии соподчинения. Матка – главный «исполнитель» гормональных приказов яичников

Именно матка, ее мышечный слой — миометрий, ее внутренняя выстилающая поверхность или эндометрий, подвергается циклическому изменению — в первую очередь под влиянием гормонов яичников.

Для первой фазы менструального цикла или для фолликулярной фазы, характерным будет утолщение и повышенное питание мышечной оболочки матки или гипертрофия. Для второй фазы или лютеиновой, будет характерна гиперплазия, то есть увеличение числа клеток.

Интересно, что, несмотря на обилие гормонов, начиная от гипоталамических рилизинг — факторов, кортикальных нейропептидов, гонадотропных гормонов гипофиза — матка «слушается» непосредственно приказов только яичниковых гормонов. Это очень напоминает знаменитый средневековый принцип: «вассал моего вассала — не мой вассал».

Это очень мудрое природное решение, и каждый нижележащий орган слушается только своего непосредственного начальства. Исключение из этой схемы, пожалуй, есть только для кортикальных нейропептидов. Они влияют не только на гипоталамус и на выработку либеринов и статинов, но и на функцию секреции гормонов гипофиза.

Эндометрий при правильном регулировании цикла последовательно проходит несколько фаз: это регенерация, пролиферация, секреция и десквамация. Последняя фаза иными словами и обозначает менструальное кровотечение, во время которого убирается ненужный дежурный эпителий.

Изменения

После прохождения месячных и окончания предыдущего цикла, начинает вновь регенерировать эпителий. Это происходит на 3-4 день нового менструального цикла. Нужно помнить, что в это время внутренняя поверхность матки представляет собой большую рану, пусть и запрограммированную природой, и именно в это время женщинам нужно наиболее беречься от простудных заболеваний.

Вторая фаза или пролиферация маточного эпителия полностью соответствует фолликулярной фазе яичника и проходит на уровне под контролем эстрогенов. Гистологически выделяют три периода в этой фазе, и разница между ними — в структуре маточного эпителия. Она изменяется под влиянием эстрогенов и заканчивается овуляцией.

После овуляции, когда желтое тело начинает продуцировать прогестерон, в эндометрии начинается фаза секреции. Железы эндометрия максимально развиваются, расширяются их просвет, и примерно на 20 — 21 день менструального цикла эндометрий является наиболее развитым, наиболее питательным для возможной имплантации оплодотворенной яйцеклетки.

В том случае, если оплодотворение не произошло, то стадия секреции завершается в среднем от 24 до 27 дня цикла. В яичнике в это время заканчивается регресс желтого тела, и утрачивается «удержание» развитого эпителия прогестероном.

В результате развитый эпителий сморщивается, его толщу начинают пронизывать очаговые кровоизлияния, волокнистая структура эндометрия начинает разъединяется и расплавляться. На этой фазе, которая соответствует 26 и 27 дню нормального цикла, в гистологических препаратах эндометрия можно увидеть значительные признаки ишемии. Гистологи называют этот период «анатомической менструацией».

Это название возникло потому, что клинически кровотечения ещё нет, эндометрий удерживается, но он не способен без прогестерона больше иметь нормальную структуру.

При нормальном цикле на 28 или 29 день начинается плановое кровотечение, которое возникает в результате длительного артериального спазма мелких сосудов эндометрия. Возникают внутрисосудистые тромбы, капилляры становятся хрупкими и ломкими, ткань эндометрия пропитывается кровью, сосуды разрываются и возникают месячные.

К сожалению, объем этой статьи не позволяет рассказать даже кратко о том, как многочисленные гормональные взаимоотношения между гипоталамусом, гипофизом, яичниками влияет не только на матку, но и на маточные трубы, на состояние слизистой оболочки влагалища, на молочные железы.

Но изложенного объема информации вполне хватит для того, чтобы запомнить: нарушения функции гипоталамо – гипофизарно — яичниковой системы могут протекать с самыми разными клиническими симптомами. Это отсутствие месячных и бесплодие, маточное кровотечение в середине цикла, отсутствие овуляции, привычная потеря беременности и прочие симптомы и признаки, которые иногда кажутся различными и несвязанными между собой.

Также нужно помнить, что различные врожденные конституционные аномалии и наследственные заболевания также могут приводить к недостатку гормональной активности.

Обычно основной специалист, который занимается вопросами эндокринный репродуктологии — это гинеколог-эндокринолог. Но в тех случаях, когда нарушения произошли в головном мозге, то здесь могут помочь не только эндокринологи, но иногда и нейрохирурги, особенно, если речь будет идти об аденомах гипофиза, и подобных состояниях.

Апоплексией гипофиза именуется острое патологическое состояние, возникающее по причинам стремительного разрастания опухолевого образования гипофиза, некротических процессов, разрыва либо кровоизлияния.

Патология дополняется интенсивной болезненностью головы, приступами тошноты, падением зрения. Гипофизарное поражение ведет к возникновению гипопитуиризма.

Из-за сдавливания мозговых сосудов развивается локальная ишемия.

Диагностирование заключается на КТ ГМ, а также выявлении концентраций тропных гормонов.

Терапия имеет полную зависимость от остроты состояния и распространенности процесса. При поражениях обширного типа выполняют гормонотерапию и хирургическое вмешательство в целях декомпенсации структур ГМ.

Апоплексия гипофиза относится к неотложным состояниям неврологической и эндокринной направленности, которое заключается в полостном кровоизлиянии области , а также сдавленностью тканей параселлярной зоны.

Патология мало распространенна, тем не менее, является угрожающим жизни пациента состоянием.

Прогрессирование апоплексии зачастую наблюдается у пациента с быстро развивающимися опухолевыми процессами гипофизарной зоны, при условии значительных либо гигантских образований. Зачастую диагностируются кровоизлияния в опухоль, но возможны и некрозы с ишемическими инфарктами.

Для справки!

Подобное неотложное состояние возникает приблизительно у 3% пациентов с диагностированными аденогипофизарными опухолями.

Факторы, способствующие развитию неотложного состояния

Неотложное состояние развивается у пациентов на фоне аденом соматотропных и кортикотропных, метастазирования в гипофизарные ткани и глиомами. Способствовать развитию апоплексию могут такие обстоятельства:

  1. Продолжительная терапия с антикоагулянтами. Использование значительных доз подобных препаратов при завышенных значениях АД способны выступать провоцирующим фактором развития кровоизлияний из сосудов ГМ.
  2. Лучевая терапия, которая становится причиной нарушения структуры и функционирования сосудистых каналов головного мозга и может приводить к кровотечениям и трофическим язвам.
  3. в гипофизарной зоне, которые стремительно разрастаются и приводят к нарушениям трофики этого отдела головного мозга по причине сдавливания ближайших тканей.
  4. Травмации, являющиеся следствием исследований гипофизарной области мозга – инвазивные методики способны приводить к нарушениям целостности структур и приводить к кровоизлияниям.
  5. Черепно-мозговые повреждения, которые представлены сотрясениями, ушибами и переломами костных черепных структур могут становиться причиной травм тканей либо приводить к возникновению опухолевых образований.

Также существуют варианты идиопатического кровоизлияния, которые привели к спонтанной апоплексии без каких-либо химических либо физических влияний в анамнезе.

Картина апоплексии имеет взаимосвязь со стремительным прогрессированием опухолевого процесса гипофизарной зоны ГМ. Это состояние характеризуется усилением местной микроциркуляции и разрастанием сосудистой сетки.

Химио- либо физическое влияние на новообразование становится провоцирующим фактором, приводящим к нарушению структуры капиллярных стенок и кровоизлияний в подпаутинную область.

Стремительное прогрессирование опухоли провоцирует сдавливание следующих мозговых структур:

Перечисленное обуславливает быстрое нарастание симптоматики, свойственной неврологии при гипофизарной апоплексии.

При сдавливании нервных волокон происходит нарастание проблем такого характера:

Наиболее часто при апоплексии наблюдается сохранение целостности и функциональности нейрогипофиза, при поражении аденогипофиза.

Симптоматические проявления

Симптоматические проявления неотложного состояния имеют зависимость от объемов опухоли, типа поражающего фактора и могут разниться от симптоматики слабо выраженной вплоть до расстройств сознания и комы.

Для справки!

Порядка 1/4 гипофизарных апоплексий не имеют клинических проявлений.

Значительное кровоизлияние в мозговую паренхиму сопровождается быстрым нарастанием симптоматики неврологического характера:

  • сильная болезненность головы;
  • позывы ко рвоте;
  • приступы тошноты.

При отсутствии медицинской помощи возникает отек ГМ и помутнение сознания, которое способно перерасти в кому.

При стремительном разрастании новообразования и смещении структур мозга происходит следующие:

  • падение зрение, может развиться слепота;
  • птоз;
  • нарушения зрительных полей.

Сжатие внутренней сонной артерии ведет к развитию ишемического инсульта и компрессии средней артерии – происходит утеря обоняния и прогрессирование аносмии.

При гипофизарных повреждениях проявляются расстройства эндокринного характера. При скромных объемах новообразования и малом кровоизлиянии концентрации тропных гормонов не изменяются и соответствуют физиологической норме.

При массивном кровоизлиянии наблюдается расстройство функций передней гипофизарной доли и прогрессирование гипопитуитаризма.

Такое состояние характеризуется следующими изменениями гормонального статуса пациента:

  • понижение АКТГ;
  • спад СТГ;
  • падение ТТГ;
  • уменьшение ;
  • снижение ;
  • понижение пролактиновой выработки.

Порядка в 5-10% клинических случаев развивается диабет несахарный, который дополняется полидипсией и полиурией.

Симптоматика осложнений

При значительных геморрагиях, поступлением крови в спинномозговую жидкость возникает прогрессирование менингеальной симптоматики, а также наблюдаются следующие проявления:

расстройства моторики;
ступор;
сопор;
коматозное состояние.

При кровоизлиянии в паренхиму срединных мозговых структур могут развиваться такие патологические состояния:

  • утеря сознания;
  • эпилепсия;
  • паралич.

При генерализированной травме аденогипофиза происходи развитие недостаточности всех тропных биологически активных соединений и понижению работоспособности периферических желез внутренней секреции.

Также присутствуют такие проявления:

  • падение показателей массы тела;
  • явная астенизация;
  • проявления ;
  • гипофизарная кома;
  • расстройства психоневрологического характера

Поражение центра дыхания и сердечнососудистого в продолговатом мозге провоцирует внезапный летальный исход.

Диагностирование

Разнообразие симптоматических проявлений и результатов лабораторной диагностики при гипофизарной апоплексии способствуют возникновению трудностей в постановке диагноза.

При подозрении на состояние обязательным является осмотр следующих специалистов:

  • невролог;
  • офтальмолог;
  • нейрохирург.

При предположениях этого патологического состояния требуется прохождение таких диагностических исследований:

  1. Лучевое. КТ ГМ с контрастом выступает ключевым диагностическим мероприятием, которое предоставляет возможность выявить зоны геморрагии, некрозы и новообразование любых параметров.

МРТ либо рентгенографическое исследование черепа боковой развертки делается при невозможности КТ.

Рентгенографическое исследование выявляет объемные новообразования зоны гипофизарной ямки, а МРТ обнаруживает зоны некроза и опухолевые образования скромных параметров.

  1. Определение гормонального статуса. Кровь исследуется на концентрации пролактина, значения кортизола, соматотропного и гонадотропных биологически активных соединений.
  2. Мониторинг состояния пациента. Осуществляется при использовании ОАМ, ОАК, теста ликвора, биохимии крови с определением концентраций мочевины, электролитов кальция и натрия, креатинина.

Дифференциация выполняется со следующими состояниями:

  • окклюзия сонной артерии;
  • разрыв аневризмы мозговых сосудов;
  • менингит бактериальный;
  • менингит вирусный;
  • инсульт;
  • менингоэнцефалит;
  • прочие внутричерепные образования.

В диагностических целях исследуют спинномозговую жидкость на сахар, белки крови и лейкоциты. Выполняют ангиографию сосудов внутри черепа.

Терапия

Лечебные мероприятия имеют зависимость от остроты состояния пациента, а также картины патологии. При недостаточности эндокринного характера выполняют гормонозаместительную терапию до нормализации состояния.

При усугублении симптоматики гипертензии внутричерепной, стремительном понижении зрительной функции, рисках возникновения отека ГМ, утере сознания выполняют оперативную декомпрессию ГМ.

Хирургическое вмешательство выполняется в экстренном варианте транскраниальным либо транссфеноидальным доступом.

В ходе операции выполняется забор биоматериала для гистологии, понижаю давление на значимые мозговые структуры и выполняют тотальное иссечение опухолевого образование, геморрагических и некротических масс.

По завершению вмешательства в качестве профилактической меры по отношению к отеку и внутричерепной гипертензии, выполняют постановку дренажа вентрикулярного.

В постоперационный период выполняют следующие манипуляции:

  • восстановление баланса кислот и щелочей;
  • нормализация электролитного баланса;
  • коррекция расстройств эндокринного характера.

В случае необходимости выполняют принудительное вентилирование легких.

Профилактические меры и прогноз

Прогноз в случае гипофизарной апоплексии имеет полную зависимость от типа и размеров поражения головного мозга.

В случае локализированного кровоизлияния при условии сохранения верного функционирования ГМ, при получении пациентом неотложной медицинской помощи, прогноз носит благоприятный характер.

В большей части вариантов получается нормализовать состояние и восстановить верные значения гормонов и электролитов.

В случае массивного кровоизлияния, стремительного роста опухолевого образования, дополненного сжатием структур мозга прогноз неблагоприятен – нарушение сознания, кома и летальный исход, но подобное состояние является крайне редким.

Профилактические меры, нацеленные на предотвращение развития гипофизарной апоплексии, заключаются в диспансерном учете эндокринолога и невролога.

Также требуется ежегодной прохождение КТ по отношению к вероятным новообразованиям ГМ.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»