Биотехнология. Генная инженерия. Самые прогрессивные биотехнологии Интересные факты о биотехнологии

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Вокруг генномодифицированных продуктов крутится немало всевозможных слухов. Врачи предупреждают нас о том, что ГМО наносят большой вред здоровью людей. С другой стороны, находятся те, кто заявляют, что серьезные исследования, подтверждающие опасность ГМО, не проводились. Так, где же все-таки, правда?

Впервые на мировом рынке генетически модифицированные продукты появились более 20 лет тому назад. В 1994 году в США официально разрешили продажу ГМ-помидоров. С тех пор было выведено много новых улучшенных сортов овощей, фруктов и живых культур.

Что это за ГМО такое, раз его так все боятся

Генетически модифицированные продукты еще называют трансгенными, так как создаются они с помощью генной инженерии. Говоря простым языком, генномодифицированными могут быть как продукты питания, так и живые организмы. В них присутствуют гены, искусственно пересаженные из других растений или животных. Этот процесс в селекции называют «скрещиванием».

Зачем пересаживают гены? А для того, чтобы растение смогло стать стрессоустойчивым к насекомым, различным заболеваниям или климатическим условиям. Это обеспечивает увеличение сроков хранения, улучшение вкусовых качеств, защиту от вредителей. Многие страны таким образом решают проблему с урожайностью. Ведь вырастить и сохранить ГМ-растения, фрукты и овощи намного легче, чем обычные, сильно подверженные влиянию окружающей среды.

В Америке вывели сорт клубники с геном рыбы, которая обитает в северных морях. Таким образом, ученые добились ее устойчивости к морозам. А вот в картофель внедрили лектин, геном подснежника, который делает плод устойчивым к вредителям. Бразилия специализируется на выращивании модифицированной черной фасоли для победы над мозаичным вирусом. Китайцы выращивают устойчивый к жаре и засухе рис. В Индии с помощью трансгенов улучшают свойства бананов, кукурузы, цветной капусты и кабачков.

Среди 18 стран, в которых официально разрешено выращивание ГМ-растений, лидерами являются США, Аргентина, Канада, Бразилия, Австралия и Китай. В России разрешено к использованию: 3 сорта сои, 6 сортов кукурузы, 3 сорта картофеля, 2 сорта свеклы, 2 сорта риса и 5 сортов других культур. А вот власти Швейцарии запретили использование и продажу ГМО в течении 5 лет. Жесткий контроль за использованием ГМ-продуктов введен и в Великобритании.

Как получают генномодифицированные растения

Все начинается с лаборатории. Первым делом из какого-нибудь растения научным путем выделяют определенный ген. Потом его пересаживают в клетку выбранной живой культуры. Это делается с целью улучшить ее свойства. Полученные генномодифицированные растения проверяются на пищевую и биологическую безопасность, утверждают биологи.

Факты о пользе ГМО

  • Сторонники ГМО среди различных доводов самым главным считают снабжение сельхозпродуктами в первую очередь население небольших городов и мегаполисов.
  • Выращивание стрессоустойчивых генномодифицированных фруктов, овощей и злаков позволяет в разы увеличить урожайность сельскохозяйственных культур.
  • Выращивание трансгенных продуктов позволяет избавиться от ядохимикатов, которыми опрыскивают сельскохозяйственные культуры. В будущем это даст возможность избавиться от хронических болезней, в том числе от аллергий.
  • Еще одним из доводов является утверждение, что на самом деле влияние ГМ-продуктов на организм человека еще не доказано.

Факты о вреде ГМО

  • Противники ГМО утверждают, что трансгенные продукты наносят вред человеческому организму. Хотя прямых доказательств этому нет. Тем не менее, специалисты акцентируют внимание на таких недугах, как аллергии, ожирение, рак, невынашивание беременности и другие.
  • Продукты генной инженерии могут способствовать устойчивости организма к антибиотикам. Их применяют при создании трансгенных продуктов, чтобы не дать болезням испортить урожай.
  • По некоторым данным, употребление ГМО влияет на гормональный фон детей. Специалисты отмечают, что в растущем организме ребенка ГМ-продукты могут повести себя непредсказуемо.
  • В составе генномодифицированных фруктов и овощей дисбаланс витаминов, аминокислот, микроэлементов и жирных кислот. При употреблении такой пищи может нарушиться обмен веществ и иммунитет.

Самые распространенные генномодифицированные продукты

— соя, рапс, кукуруза, семечки и их производные (в том числе подсолнечное и кукурузное масло, попкорн, соевое сухое молоко, белковые коктейли и батончики для спортсменов);

— картофель (чипсы, сухое пюре, крахмал, полуфабрикаты и т.д.);

— пшеница (хлебобулочные и кондитерские изделия);

— томаты (соусы, кетчупы, паста и т.д.);

— кабачки, лук, морковь, свекла, в т.ч. сахар из свеклы;

— рис и изделия из него;

— шоколадные конфеты, карамель, мороженное, газированные напитки;

— рыбные и мясные изделия и полуфабрикаты;

— майонез, маргарин, молочные продукты и др.;

детское питание для новорожденных.

И даже те, кто самостоятельно выращивает овощи и фрукты, могут приобрести ГМ-семена на рынке или в специализированных магазинах.

Существует несколько способов, позволяющих отличить ГМ-продукты от натуральных. Генномодифицированные продукты всегда почти идеальной ровной формы, чистые, без гнили, без признаков поражения болезнью и поедания насекомых. ГМ-продукты в отличие от натуральных не дают обилия сока при разрезании.

Фирмы, использующие ГМ-продукты

Особенно активно генетически измененные культуры используют крупные корпорации. Вот далеко неполный список известных торговых марок:

Kellogg’s, Nestle, Heinz Foods, Hershey, McDonalds, Coca-Cola, Danon, Similac, Lays, Mars, Pepsi Cola, Milka, Lipton, Cadbury, McDonalds.

Научные разработки в генной инженерии процесс постоянный. Ученые все время что-то скрещивают и выращивают. И не только растения, но и живые микроорганизмы. По официальной статистике на прилавках наших магазинов продуктов с содержанием ГМО более 30%. Кстати, далеко не все производители указывают на упаковках достоверную информацию. Мне, например, попадались упаковки со знаком «Без ГМО», а в составе был указан модифицированный крахмал.

Чему верить: своим глазам или нечестному производителю? Врачам, утверждающим, что ГМО опасны, или биологам, которые говорят, что вред ГМО преувеличен?

А знаете ли вы, что практически все породы животных и растения, которые используются в сельском хозяйстве, это продукты генной инженерии, т.е. прямого вмешательства человека в геном. В пример можно привести мула – это гибрид, полученный в результате скрещивания кобылы и осла. До ХХ века процессы селекции длились годами. Современные методы позволяют добиться результата намного быстрее — буквально в течении нескольких месяцев.

Проведение официальных исследований

На самом деле официальные исследования по влиянию ГМО на организм человека проводились. Генеральный директор Европейской комиссии по науке и информации в своем докладе отметил следующее: на основании более 130 научно-исследовательских проектов, проводимых в течении больше 20 лет с участием 500 независимых исследовательских групп, было установлено, что продукты генной инженерии не более опасны, чем традиционные технологии в селекции культур.

Оппоненты генномодифицированных продуктов утверждают, что последствия влияния ГМО на человеческий организм проявятся не сразу. В ответ ученые отмечают, что за 15 лет употребления ГМ-продуктов, ни про какие побочные эффекты до настоящего времени не стало известно. Крупные компании, которые производят продукты питания с содержанием ГМО (например, Монсанто), были вынуждены проводить независимые исследования. Почти все они подтвердили безвредность ГМО. Не выявлено никаких отдаленных последствий в здоровье подопытных крыс и мышей (это грызуны с быстрой сменой поколений). А в исследованиях, которые проводись противниками ГМ-технологии, были допущены серьезные нарушения.

Оглавление темы "Биотехнология. Генная инженерия. Генная терапия.":
1. Биотехнология. Наука биотехнология. Этапы развития биотехнологии.
2. Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.
3. Промышленное применение микроорганизмов. Производство продуктов микробного синтеза. Производство антибиотиков. Производство вакцин.
4. Генная инженерия. Биобезопасность. Актуальность генной инженерии. Теоретическая база генной инженерии.
5. Организация генетического материала в клетке. Генотип. Что такое генная инженерия? Этапы получения генной продукции.
6. Применение методов генной инженерии. Показания (оправданность) применения генной инженерии. Причины применения генной инженерии.
7. Биобезопасность в генной инженерии. Документы регламентирующие биобезопасность.
8. Группы опасности микроорганизмов. Оценка риска применения генетически модифицированных микроорганизмов.
9. Генная диагностика. Генная терапия. Что такое генная диагностика и генная терапия? Виды генной терапии.
10. Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.
11. Перспективы генной терапии. Будущее генной терапии. Задачи генной терапии.

Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.

Новые методы получения промышленно важных продуктов - прежде всего методы биотехнологии , и в особенности, промышленной микробиологии. Промышленная микробиология основывается на применении микроорганизмов в промышленности для получения коммерчески, ценных продуктов и лекарств. Важнейшие продукты микробного синтеза - специальные вещества, используемые для фармацевтических и пищевых целей (антибиотики, ферменты, ингибиторы ферментов, витамины, ароматизаторы, добавки для пищевой промышленности и др.).; Гибкость метаболизма и высокая способность микробов к адаптации, простота культивирования, изученность генетики, разработанные методы направленного создания штаммов с заданными свойствами - преимущества, делающие микробную биотехнологию одним из перспективных направлений промышленности. Целесообразность промышленного производства определяется такими факторами, как высокий выход продукта (образование больших количеств из исходного материала), низкая стоимость производства и доступность сырья.

Области применения биотехнологии представлены в табл. 7-1. В настоящее время разработаны способы получения более 1000 наименований продуктов биотехнологическими способами. В США совокупная стоимость этих продуктов в 2000 г. оценивается в десятки миллиардов долларов. Все отрасли, в которых может быть использована биотехнология, перечислить практически невозможно.

Таблица 7-1. Области использования биотехнологии
Область применения Примеры
Медицина, здравоохранение, фармакология Антибиотики, ферменты, аминокислоты, кровезаменители, алкалоиды, нуклеотиды, иммунорегуляторы, противораковые и противовирусные препараты, новые вакцины, гормональные препараты (инсулин, гормон роста и др.), монокпональные AT для диагностики и лечения, пробы ДНК для диагностики и генотерапии, продукты диетического питания
Получение химических веществ Этилен, пропилен, бутилен, окисленные углеводороды, органические кислоты, терпены, фенолы, акрилаты, полимеры, ферменты, продукты тонкого органического синтеза, полисахариды
Животноводство Усовершенствование кормовых рационов (производство белка, аминокислот, витаминов, кормовых антибиотиков, ферментов, заквасок для силосования), ветеринарных препаратов (антибиотики, вакцины и т.д.), гормонов роста, создание высокопродуктивных пород, пересадка оплодотворённых клеток, эмбрионов, манипуляции с чужеродными генами
Растениеводство Биорациональные пестициды, бактериальные удобрения, гибберели-ны, производство безвирусного посадочного материала, создание высокопродуктивных гибридов, введение генов устойчивости к болезням, засухе, заморозкам, засоленности почв
Рыбное хозяйство Кормовой белок, ферменты, антибиотики, создание генетически модифицированных пород с усиленным ростом, устойчивых к заболеваниям
Пищевая промышленность Белок, аминокислоты, заменители сахара (аспартам, глюкозофруктовый сироп), полисахариды, органические кислоты, нуклеотиды, липиды, переработка пищевых продуктов
Энергетика и добыча полезных ископаемых Спирты, биогаз, жирные кислоты, алифатические углеводороды, водород, уран, интенсификация добычи нефти, газа, угля, искусственный фотосинтез, биометаллургия, добыча серы
Тяжёлая промышленность Улучшение технических характеристик каучука, бетонных, цементных, гипсовых растворов, моторных топлив; антикоррозийные присадки, смазки для проката чёрных и цветных металлов, технический белок и липиды
Лёгкая промышленность Улучшение технологии переработки кож, производства текстильного сырья, шерсти, бумаги, парфюмерно-косметических изделий, получение биополимеров, искусственных кожи и шерсти и т.д.
Биоэлектроника Биосенсоры, биочипы
Космонавтика Создание замкнутых систем жизнеобеспечения в космосе
Экология Утилизация сельскохозяйственных, промышленных и бытовых отходов, биодеградация трудноразлагаемых и токсических веществ (пестицидов, гербицидов, нефти), создание замкнутых технологических циклов, производство безвредных пестицидов, легкоразрушаемых полимеров
Научные исследования Генно-инженерные и молекулярно-биологические исследования (ферменты рестрикции ДНК, ДНК- и РНК-полимеразы, ДНК- и РНК-лигазы, нуклеиновые кислоты, нуклеотиды и т.д.), медицинские исследования (средства диагностики, реактивы и пр.), химия (реактивы, сенсоры)

Оптимизация микробиологических процессов в биотехнологии . Принципиальные подходы к оптимизации микробных биотехнологических процессов: управляемое культивирование (изменение состава питательной среды, целевые добавки, регуляция скорости перемешивания, аэрации, модификация температурного режима и пр.); генетические манипуляции, которые подразделяют на традиционные методы (селекция штаммов) и методы генной инженерии (технология рекомбинантных ДНК).

В настоящее время микробиологическим путём получают микробную биомассу , первичные и вторичные продукты метаболизма. Первичные продукты (продукты первой фазы) - метаболиты, синтез которых необходим для выживания данного микроорганизма. Синтез вторичных продуктов (продукты второй фазы) не относится к жизненно необходимым для микроорганизма-продуцента. Оптимальные условия для получения биомассы определяются высокими скоростями протока среды через культуры микроорганизмов и стабильными химическими условиями культивирования (в том числе рН, количество кислорода и углерода). Процесс получения продуктов первой фазы (в частности, ферментов) оптимизируют в целях увеличения удельной активности фермента (единиц/г*ч -1) и объёмной продуктивности (единиц /л*ч -1).

Для получения продуктов второй фазы (например, антибиотиков) главная задача - максимальное увеличение их концентрации, что ведёт к снижению затрат на их выделение.

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности.

В 1916–1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака.

Огромный вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах, создавший важное прикладное направление биохимии – техническую биохимию. А. Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств (чая, табака и т. п.) были важнейшими предпосылками возникновения современной биотехнологии.

В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. За послевоенные годы микробиологическая промышленность приобрела принципиально новые черты: микроорганизмы стали использовать не только как средство повышения интенсивности биохимических процессов, но и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток ценнейшие и сложнейшие химические соединения. Перелом был связан с открытием и началом производства антибиотиков.

Первый антибиотик – пенициллин – был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

Виды биотехнологии

Биоинженерия

Биоинженерия или биомедицинская инженерия – это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженерия/биомедицинская инженерия – это применение технических подходов для решения медицинских проблем в целях улучшения охраны здоровья. Эта инженерная дисциплина направлена на использование знаний и опыта для нахождения и решения проблем биологии и медицины.

Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач.

Среди важных достижений биоинженерии можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов («drug design»).

Биомедицина

Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Биомедицина включает накопленные сведения и исследования, в большей или меньшей степени общие медицине, ветеринарии, стоматологии и фундаментальным биологическим наукам, таким, как химия, биологическая химия, биология, гистология, генетика, эмбриология, анатомия, физиология, патология, биомедицинский инжиниринг, зоология, ботаника и микробиология.

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения. Фактически, биофармакология – это плод конвергенции двух традиционных наук – биотехнологии, а именно, той её ветви, которую именуют «красной», медицинской биотехнологией, и фармакологии, ранее интересовавшейся лишь низкомолекулярными химическими веществами, в результате взаимного интереса.

Объекты биофармакологических исследований – изучение биофармацевтических препаратов, планирование их получения, организация производства. Биофармакологические лечебные средства и средства для профилактики заболеваний получают с использованием живых биологических систем, тканей организмов и их производных, с использованием средств биотехнологии, то есть лекарственные вещества биологического и биотехнологического происхождения.

Биоинформатика

Совокупность методов и подходов, включающих в себя:

  1. математические методы компьютерного анализа в сравнительной геномике (геномная биоинформатика);
  2. разработка алгоритмов и программ для предсказания пространственной структуры белков (структурная биоинформатика);
  3. исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем.

В биоинформатике используются методы прикладной математики, статистики и информатики. Биоинформатика используется в биохимии, биофизике, экологии и в других областях.

Бионика

Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика – это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Различают :

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Биоремедиация

Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов.

Клонирование

Появление естественным путём или получение нескольких генетически идентичных организмов путём бесполого (в том числе вегетативного) размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул (молекулярное клонирование). Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток – клон.

Генетическая инженерия

Суть генетической инженерии заключается в искусственном создании генов с нужными свойствами и введение их в соответствующую клетку. Перенос гена осуществляет вектор (рекомбинантная ДНК) – специальная молекула ДНК, сконструированная на основе ДНК вирусов или плазмид, которая содержит нужный ген, транспортирует его в клетку и обеспечивает его встраивание в генетический аппарат клетки.

Для маркировки определенных клеток организмов в молекулярно-генетических исследованиях используют ген GFP, выделенный из медузы. Он обеспечивает синтез флуоресцентного белка, который светится в темноте.

Генетическая инженерия широко используется как в научных исследованиях, так и в новейших методах селекции.

Биотехнология – это совокупность промышленных методов, которые применяют для производства различных веществ с использованием живых организмов, биологических процессов или явлений. Традиционная биотехнология основана на явлении ферментации – использовании в производственных процессах ферментов микроорганизмов. Клеточная инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии культивирования клеток и тканей вне организма в искусственных условиях. Генетическая инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии выделения генов из организмов и отдельных клеток, их видоизменение и введение в другие клетки или организмы.

Некоторые этические и правовые аспекты применения биотехнологических методов

Этика – учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика – часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.

В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.

В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

Выделение этих клеток производят из эмбрионов и плодов человека 5-8 недель развития, полученных при медицинском прерывании беременности (в результате аборта), что порождает многочисленные вопросы относительно этической и юридической правомерности проведения исследований на эмбрионах человека, в том числе такие:

  • насколько необходимы и оправданы научные исследования на эмбриональных стволовых клетках человека?
  • допустимо ли ради прогресса медицины разрушать человеческую жизнь и насколько это морально?
  • достаточно ли проработана правовая база для применения этих технологий?

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования.

В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Рынок биотехнологий

Параллелей с современным биотехом у ИТ гораздо больше, чем может показаться на первый взгляд. Информационные технологии не появились сами по себе, их расцвету предшествовали фундаментальные открытия в физике, физике материалов, вычислительной математике и кибернетике. В результате сегодня ИТ – это область «легких стартапов», от возникновения идеи до принесения прибыли в которых проходит совсем немного времени, и мало кто задумывается о той работе, которая была проделана до сегодняшнего дня.

Ситуация с биотехнологиями аналогична, просто мы сейчас находимся на более раннем этапе, когда ещё идет разработка инструментов, программ. Биотехнологии ждут появления своего «персонального компьютера»”, только в нашем случае он не будет понятным массовым устройством – речь идёт скорее о наборе эффективных и недорогих инструментов.

Можно сказать, что сейчас ситуация подобна той, что была в 1990-е в ИТ. Технологии все еще развиваются и стоят достаточно дорого. Например, полное секвенирование человека стоит $1000. Это намного дешевле, чем цена в $3,3 млрд. у Human Genome Project, но она все еще невероятно высока для обывателя, а её применение для клинической диагностики на широком уровне пока еще невозможно. Для этого нужно, чтобы технология подешевела ещё раз в 10 и улучшила технические свойства настолько, чтобы ошибки секвенирования были нивелированы. В биотехе пока нет таких мощных проектов, как Facebook, но Illumina, Oxford Nanopore, Roche – всё это крайне успешные компании, чья деятельность часто напоминает Google, скупающий интересные стартапы. А Nanopore, например, стали миллиардерами, еще не выйдя на рынок, благодаря сочетанию хорошей исходной идеи, менеджмента и успехов в привлечении финансирования.

Сегодня биотехнологии – это ещё и рынок больших данных, и это продолжает параллели с ИТ, который в данном случае служит уже своего рода инструментом для более крупного и сложного биотеха. Такие компании как Editas Medicine (одни из создателей нашумевшей технологии редактирования генома CRISPR/Cas9) сделали свой IP на результатах секвенирования геномных данных бактерий из открытых источников. Они далеко не первыми стали пожинать плоды от накопленной информации, они даже не были первыми, кто открыл принцип действия кластера CRISPR, однако именно Editas Medicine создали биотехнологический продукт. Сегодня это компания стоимостью более $1 млрд.

И это не единственный бизнес, который возникнет благодаря анализу уже существующих данных. Более того, нельзя сказать, что за такими данными стоит очередь – их уже гораздо больше, чем можно проанализировать, а будет ещё больше, ведь учёные не перестают секвенировать. К сожалению, методы анализа еще несовершенны, поэтому не всем удается превратить данные в многомиллиардный продукт. Но если мы прикинем скорость развития инструментов анализа (подсказка: она очень высокая), несложно понять, что в будущем компаний, заметивших в больших данных генома что-то интересное, станет гораздо больше.

Может ли Россия стать биотехнологической страной?

Основная проблема биотехнологий в России – это не запрет ГМО, как многим кажется, а большое количество всевозможных бюрократических барьеров. Этот факт отмечают и в правительстве. Но даже к барьерам можно приспособиться. Последние 26 лет мы развиваемся под прессом реформ, постоянной смены правил игры, а бизнесу нужна стабильность и уверенность в том, что не будет происходить никаких потрясений.

Если российским биотехнологиям не мешать, они начнут развиваться. Также хочется отметить, что необдуманное желание помогать, те самые непродуманные госинвестиции, на самом деле, приводят к противоположному результату – субсидирование приучает компании к тому, что они будут поддерживаться государством постоянно. Как показывает практика, компании на госинвестициях становятся не эффективными. Везде нужна здоровая конкуренция, поэтому первоначальные вклады должны идти даже не от государства, а от бизнеса, который должен чувствовать уверенность в завтрашнем дня, с чем у нас пока проблемы.

Самое правильное для государства – это инвестировать в создания оптимальной среды для биотеха. У нас есть и умы, и люди с энергией и желанием созидать – важно не дать этому желанию пропасть.

Сегодня биотехнологии находятся в фазе интенсивного роста, но уже можно представить вектор их развития. Ведь сам смысл технологий не изменится, как он не изменился после появления компьютера: его идея в 1951 году не особо отличалась от той, что стоит за современными компьютерами. Существенно отличается только функционал и производительность. То же самое произойдёт и с биотехнологиями, а драйвер их развития даже понятнее – это вечное желание людей быть здоровыми и жить долго, не соблюдая при этом всех сложных правил здорового образа жизни. Поэтому в самом ближайшем будущем нас ждёт расцвет биотехнологий, и в конечном счёте это прекрасные новости для всего человечества.

Комикс на конкурс «био/мол/текст»: Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, способствуют решению разнообразных задач. За счет генной инженерии совершен огромный шаг навстречу новым технологиям. В этой статье будет рассказано об истории открытия, становления и успехов биотехнологии, а также о тех вопросах, над которыми сейчас работают молекулярные биологи и биотехнологи.

Генеральный спонсор конкурса - компания «Диаэм» : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий выступил медико-генетический центр .


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, хорошо способствуют решению разнообразных задач.

В настоящее время биотехнология способна решить множество проблем медицины и создания пищевых продуктов. Также особая роль биотехнологии отводится в сельском хозяйстве. Ученые занимаются созданием и дальнейшим культивированием трансгенных растений и синтезом средств их защиты.

За счет генной инженерии был совершен огромный шаг навстречу новым технологиям. Однако ее развитие породило множество споров, в том числе и о ГМО . Несмотря на все слухи, польза ГМО явно видна. ГМ-растениям не страшен холод, пестициды или засуха. Помимо этого, использование генномодифицированных организмов может улучшить качество жизни населения стран третьего мира.

Самая главная молекула. Открытие ДНК

Несомненно, молекула ДНК занимает особое место в биологической науке. Ведь ДНК является носителем всей наследственной информации, сохраняет ее и передает следующему поколению. Именно с открытия знаменитой двойной спирали учеными Фрэнсисом Криком и Джеймсом Уотсоном (1953 г.) начался новый виток в истории человеческой культуры - эпоха генетики, молекулярной биологии, биотехнологии и биомедицины.

Значение ДНК колоссально, поскольку во всех живых организмах генетическая информация существует в виде особой структуры - двойной спирали. Рассмотрим ДНК с химической точки зрения. Молекула представляет собой достаточно длинную цепь из строительных блоков - нуклеотидов . А каждый нуклеотид состоит из азотистого основания , дезоксирибозы (особого сахара) и фосфатной группы .

Язык науки. Генетический алфавит

Двухцепочечная молекула ДНК хранит генетическую информацию, а генетическим кодом называют систему записи последовательности кодируемого белка нуклеотидами в гене.

Между языком генетики и любым другим языком можно для наглядности провести параллель. Как самый обычный текст, написанный, к примеру, на русском или английском языках, описывающий последовательность действий, так и запись информации в гене о последовательности аминокислот белка состоит из логически упорядоченных букв. То есть вся генетическая информация в молекуле записана набором из четырех букв - так называемым «алфавитом». Нуклеотиды обозначаются буквами А (аденин), Т (тимин), Ц (цитозин) и Г (гуанин). Они одинаковы у всех - от бактерий до человека. Различной будет лишь последовательность этих букв.

Свойства генетического кода:

  • Триплетность . Генетический код состоит из трех букв - триплетов нуклеотидов ДНК. Они комбинируются в разной последовательности: ГЦА, АЦГ, ААТ и т.д. Каждый из триплетов кодирует конкретную аминокислоту, а это значит, что все 20 существующих аминокислот зашифрованы тремя определенными нуклеотидами.
  • Вырожденность . Триплетов, кодирующих аминокислоты, существует 61, а аминокислот только 20, поэтому каждая аминокислота может кодироваться несколькими триплетами.
  • Однозначность . Каждому триплету соответствует только одна аминокислота.

Кольцо и спираль. Разнообразие форм

После открытия структуры ДНК началось активное развитие молекулярной биологии. Тем не менее, понимая строение ДНК на уровне химической структуры, никто не мог представить, что эта молекула может быть кольцевой. Как теперь известно, кольцевую ДНК имеют бактерии. Но кольцевая молекула есть и у человека, она находится в митохондриях.

Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации . Репликация кольцевого типа - относительно простой процесс удвоения молекулы. Происходит разделение цепочек исходной молекулы и наращивание по принципу комплементарности новых цепочек по существующим. В результате получаются дочерние ДНК, которые окажутся идентичными копиями исходной. При кольцевом строении молекулы процесс удвоения протекает более точно.

Роль биотехнологии. Правда о ГМО

Переход биологии на молекулярный уровень дал начало развитию биотехнологии . Ее суть состоит в использовании методов генной инженерии для рыночного производства значимых биологических продуктов: новейших лекарств, реагентов для научных исследований и продуктов питания.

Для создания всего вышеперечисленного используют рекомбинантные белки . Это такие искусственно созданные и обладающие новыми свойствами белки, синтез которых контролируют новые гены, внедренные в клетки.

Рекомбинантные ДНК

ДНК - главный материал, с которым работает генный инженер. Но проверять результаты работы и производить рекомбинантный продукт придется с помощью живых организмов. Так, при создании рекомбинантных ДНК нельзя обойтись без кишечной палочки, которая подходит для производства некоторых биотехнологических продуктов. А при работе с эукариотическими генами и белками часто используют пекарские дрожжи. Главная особенность дрожжей - отличная способность к гомологичной рекомбинации. Дрожжи также удобно использовать при производстве рекомбинантных белков, так как они умеют редактировать матричную РНК, их продукты лишены токсичности, а у некоторых видов достаточно высокий выход продукта.

Вышеуказанные микроорганизмы стали моделями для изучения молекулярной организации и отработки генетических техник у прокариот и эукариот. Для обеспечения техники безопасности и удобства работы с рекомбинантными ДНК были созданы различные мутанты кишечной палочки. К примеру, следующие:

  • неспособные передавать плазмиды другим клеткам;
  • устойчивые к бактериофагам;
  • содержащие мутации для выявление клеток с рекомбинантными ДНК.

Для генных инженеров эта бактерия особо значима, так как:

  • для работы с ней не требуется дорогое и сложное оборудование;
  • она чувствительна к большинству стандартных антибиотиков (это существенно облегчает подбор маркеров для клонирования);
  • ее геном и биохимия хорошо изучены, разработано огромное множество инструментов для работы с ней.

Однако у кишечной палочки есть и ряд недостатков:

  • продукты, полученные при работе, могут обладать токсическими свойствами, поэтому необходимы постоянный контроль и очистка;
  • она не умеет самостоятельно сворачивать и модифицировать синтезируемые белки;
  • иногда снижается выход целевого продукта из-за формирования неполноценных белков.

Постепенно увеличивалось влияние биологии на быт и жизнь человека в целом. Это привлекло к ней всеобщее внимание. Рост возможностей современной биотехнологии породило множество споров, в том числе и о ГМО.

Человечество тысячи лет вмешивается в эволюционные процессы, проводя искусственный отбор организмов с полезными, значимыми для человека спонтанно возникшими мутациями - селекцию . К примеру, когда-то всем известной кукурузы (в современном понимании) и вовсе не существовало. Древние люди занимались скрещиваниями дикого родственника нынешней кукурузы - теосинте . И как выяснилось в результате исследований, геномы теосинте и кукурузы оказались уж очень схожими. Разницу между двумя видами определили несколько десятков генетических мутаций.

Многих пугает даже сама аббревиатура «ГМО», ведь каждый вкладывает в нее какой-то свой смысл, а у многих она ассоциируется с чем-то злым, опасным и даже смертоносным. Вероятнее всего, ГМО нагоняет страх на людей из-за непонимания, что же это такое.

ГМО - это организмы, геном которых был изменен при помощи генетической инженерии . Тем не менее факт остается фактом: за счет эволюционных процессов гены изменяются сами по себе у всех живых организмов. Отличие лишь одно: в процессе эволюции мы не можем контролировать процесс изменения генома, а в лаборатории, используя современные знания и технологии, способны изменять и улучшать гены.

Кстати говоря, у ученых-генетиков нет ни стимулов, ни целей создавать что-либо угрожающее здоровью всего человечества. Специалисты стремятся продвигать научный прогресс и производить те продукты, которые будут нужны людям.

Современная биотехнология. Генная инженерия сегодня

На данный момент перед учеными стоит ряд технологических задач. Можно изменить биологические организмы с помощью генноинженерных и клеточных методов для удовлетворения потребностей человека. К примеру, улучшить качество продуктов, получить новые виды растений и животных, придать различным живым организмам улучшенные свойства и создать необходимые лекарственные препараты за счет методов генетической инженерии .

Несомненно, в биотехнологии важное место занимает генная инженерия, позволяющая «кроить и шить» геномы подопытных организмов . Роль биотехнологии очень велика, поскольку ее способами производят генноинженерные белки (интерфероны, вакцины против серьезных заболеваний), вещества для фармакологии (лекарства, антибиотики , гормоны, антитела). А различные ферментные препараты применяют в производстве стиральных порошков, спирта. Особая роль биотехнологии - синтез средств для защиты растений и создание трансгенных растений

Трансгенные растения: вред или польза?

Люди могли изменять ДНК растений на протяжении многих лет. Скрещивая друг с другом растения с самыми лучшими свойствами, специалисты замечали, что эти свойства будут сохранены в потомстве. Так зародилась селекция.

Работа специалистов-селекционеров упростилась, когда в науке стали применять генетические законы Грегора Менделя. Позже было обнаружено, что возможно улучшить необходимые свойства растений при помощи мутаций. Число этих мутаций можно увеличивать за счет химикатов и рентгеновских лучей. В результате таких экспериментов было получено огромное количество разнообразных сортов растений. Важно знать, что такой метод может дать непредсказуемые результаты, поскольку, как известно, мутации спонтанны.

Конечно, из различных источников информации можно узнать о предполагаемом вреде трансгенных растений. И на второй план уходит одна из главных задач трансгенных организмов - спасение от нехватки важных питательных веществ и голода населения Земли. Существуют такие трансгенные растения, за счет которых удалось спасти человеческие жизни. Хорошим примером послужит золотой рис.

Золотой рис - генетически модифицированный сорт посевного риса, в зернах которого содержится огромное количество бета-каротина . Эти зерна имеют золотисто-желтый цвет. Считается, что это первая сельскохозяйственная культура, которая целенаправленно генетически модифицирована для улучшения пищевой ценности.

Вообще, при обширном выращивании, золотой рис может в несколько раз улучшить качество питания во многих странах (в том числе и в ряде стран третьего мира), где наблюдается нехватка витамина A. В организме человека витамин A производится из бета-каротина, который поступает преимущественно с растительной пищей. Для модификации риса использовали два гена: ген цветка

6 новейших разработок ученых

Новые препараты, революционные технологии, прогрессивные методы лечения — ученые всего мира работают над тем, чтобы найти инновационные способы борьбы с неизлечимыми болезнями. То, что раньше было лишь плодом бурного воображения фантастов, совсем скоро может перейти в категорию самых заурядных вещей.

1. Изменение генома – новый метод борьбы с раком

Китайские ученые собираются массово применять метод редактирования генома людей, заболевших раком. Многие врачи опасаются такого шага, так как последствия изменения генома трудно спрогнозировать в долгосрочном периоде. Исследователи West China Hospital редактируют ДНК с названием CRISPR/cas9, чтобы безнадежно больные пациенты смогли получить шанс на выздоровление.

Ученые забирают иммунные Т-клетки крови больного, чтобы «научить» их атаковать злокачественные образования, как обычную инфекцию. Похожий метод недавно изобрели и в США, но он не настолько избирательно воздействует, как метод генного изменения CRISPR. Возможно, Китай станет первой страной, где подобную методику лечения поставят на «конвейер».

2. Биопринтер для синтеза аналога кожи человека

Испанские исследователи вместе с компанией BioDan Group разработали биопринтер с возможностью 3-D печати. Вместо картриджей с чернилами в нем находятся инжекторы с биологическими материалами. Материал, создаваемый уникальным устройством, максимально точно имитирует человеческую кожу и подходит для пересадки пациентам, получившим ожоги.

Искусственную человеческую кожу можно использовать при исследовании новых лекарств и химических соединений. Созданный итальянцами материал имеет тонкий защитный слой сверху и толстую прослойку внутри, похожую на дерму. Производимая на принтере кожа включает в себя и клетки, синтезирующие коллаген.

3. Чип-имплантат против слепоты

Новая технология под названием Second Sight может стать настоящим прорывом в лечении полностью слепых людей. Благодаря чипу-имплантату, в визуальную область коры головного мозга посылаются сигналы, позволяющие пациенту увидеть световые контуры предметов, в том числе и больших букв.

На первом этапе испытаний метода исследователи не обнаружили у вживленного в организм чипа побочных эффектов. Ученые надеются с помощью инновационной технологии вернуть зрение слепым, которые стали таковыми вследствие травмы, ретинопатии, глаукомы или рака.

4. Нановолоконное покрытие для регенерации костной ткани

Группа российских и бельгийских ученых работает над созданием нановолоконного материала, который сможет стать каркасом для регенерации клеток костной ткани. Специальные имплантаты смогут исправить дефекты костей и увеличат их прочность. Материал под названием фатерит позволяет запустить процесс роста клеток после трансплантации каркаса в организм. Спустя месяц новая костная ткань полностью замещает имплантат.

5. Новый способ борьбы с гриппом

Томские ученые разрабатывают метод защиты от вируса гриппа H1N1 без применения вакцины. Исследователи уверены, что иммунитет можно «научить» быстрее вырабатывать интерферон. Именно защитный белок иммунной системы блокирует распространение вируса внутри организма. Метод позволяет доставлять лекарство в те клетки, которые выделяют слишком мало интерферона. Для этого используют гибридные микроконтейнеры с антивирусной РНК. Вирусный геном блокируется, а экспрессия вирусного гена снижается.

6. Стенты для устранения тромбов после ишемического инсульта

Чтобы предотвратить инвалидность после приступа, кровяной сгусток в сосуде нужно ликвидировать в течение 3-6 часов. Сейчас это возможно благодаря внутривенному введению специальных лекарств, которые результативны лишь в 35% случаев. Микроскопические стенты, вводимые в кровеносную систему мозга, позволяют удалить тромб за несколько минут. Эффективность нового метода составляет почти 100%.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»