Типы lcd tft дисплеев. TFT или IPS дисплей - какой лучше и почему. Отображение цветного изображения RGB

Подписаться
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

И снова путаница понятий. Если вы пытаетесь определить, чем отличаются мониторы или телевизоры, которые кто-то обозвал TFT и LCD — значит, вас ввели в заблуждение. Попробуйте найти отличия между автобусом и Икарусом? Между собакой и соседской Жучкой? Между фруктом и яблоком? Правильно, занятие бесполезное, потому что оба объекта являются одновременно и тем, и другим. Так и с технологиями матриц экранов: LCD — общее название класса дисплеев, к которому относится и TFT.

Определение

TFT-матрица — активная матрица LCD-дисплея, выполненная на основе применения тонкопленочных транзисторов.

LCD — плоский дисплей (и устройство на его базе) на основе жидких кристаллов.

Сравнение

LCD-дисплеи — изобретение не нашего века. Экраны электронных часов, калькуляторов, приборов, плееров — тоже жидкокристаллические, хотя значительно отличаются от привычных нам экранов смартфонов или телевизоров. Правда, поначалу LCD были монохромными, однако с развитием технологий расцвели в гамме RGB. TFT — тоже разновидность LCD-дисплеев, в основе производства которого лежит активная матрица на тонкопленочных транзисторах. Если сравнивать его с более ранним вариантом LCD, пассивной матрицей, то становится очевидным, что качество цветопередачи и время отклика TFT гораздо выше. В качестве кристаллов в пассивных матрицах используется скрученный полимер. Зато энергопотребление и стоимость пассивных матриц, получивших именование STN, могут порадовать любого. Впрочем, монохромные экраны в этом отношении будут выглядеть вообще призовыми, однако желающих смотреть такие телевизоры вряд ли будет много.

Принцип работы TFT заключается в том, что каждый из тонкопленочных транзисторов управляет единственным пикселем. На каждый пиксель приходится три транзистора, соответствующих основным цветам RGB (красному, зеленому и синему). Интенсивность светового потока зависит от поляризации, поляризация — от приложения электрического поля к жидким кристаллам. TFT предполагает повышение уровня быстродействия, контрастности и четкости полученного изображения.

Стоит отметить и недостатки матриц TFT, устраненные в других технологиях. Качество изображения напрямую зависит от внешнего освещения экрана. Транзисторы у любого из пикселей могут выйти из строя, что приводит к появлению “мертвых точек”, или битых пикселей. От этого ни один экран застраховать нельзя. Кроме того, TFT-матрицы в значительной мере энергоемкие, так что их использование в качестве дисплеев для мобильной электроники заставляет поступаться одним из самых важных свойств — автономностью.

Тонкопленочные транзисторы, составившие основу работы жидкокристаллических матриц, сегодня практически перебежали в другой лагерь: экраны OLED используют их для управления своими активными матрицами. Здесь уже не жидкие кристаллы, а органические соединения.

Выводы сайт

  1. LCD — тип матриц экрана, основанных на жидких кристаллах.
  2. TFT — разновидность активных LCD-матриц.
  3. TFT отличает от других технологий LCD применение тонкопленочных транзисторов.
  4. TFT-матрицы экономичны, обеспечивают качественную картинку, но энергоемкие.

Компания Tianma Microelectronics на сегодняшний день является одним из самых крупных производителей жидкокристаллических дисплеев.

Дисплеи Tianma нашли применение в самых разнообразных областях: мобильная телефония, MP3/MP4-плееры, телекоммуникационные и навигационные системы, автомобильные системы, цифровая фотография и др. Продукцию компании используют в своих изделиях такие бренды как: AT&T, Alcatel, BBK, Bosсh, Casio, Citroen, Denon, Funai, General Electric, Grundig, LG, Magellan, Motorola, NEC, Pioneer, Polaroid, Ricoh, Samsung, Siemens и Thomson.

Tianma Microelectronics была основана в Китае в 1983 году. Сейчас она имеет в своем составе несколько научно-исследовательских центров и фабрик. Работают представительства в Германии (Карлсруэ), США (Калифорния), Корее (Кенгидо) и Тайване (Таоюан).

В 1984 году компания освоила массовое производство незамысловатых (по нынешним меркам) TN LCD-дисплеев. В июле 2011 года управляющая компания AVIC International Group приобрела подразделение NEC LCD Technologies, специализирующееся на дисплеях. Сегодня, кроме TN, Tianma может предложить STN, CSTN и TFT-дисплеи.

TFT-дисплеи

Принцип работы LCD TFT

LCD TFT (Liquid crystal display Thin film transistor ) — наиболее распространенный вид жидкокристаллических дисплеев (рис. 1). Своим названием они обязаны тонкопленочному транзистору (TFT), являющемуся разновидностью полевого, в котором металлические контакты и полупроводниковый канал изготавливаются в виде тонких пленок. TFT используется для управления жидкими кристаллами, т.е. для формирования цвета пикселей.


Рис. 1.

В первых TFT-дисплеях, появившихся в 1972 году, использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si). Кроме аморфного кремния на данный момент разработано много других технологий, но лидером по объему производства пока остается a-Si. Именно по этой технологии изготавливает свои TFT-дисплеи компания Tianma.

Дисплей состоит из ЖК-матрицы, источников света для подсветки, контактного жгута и корпуса. Каждый пиксель ЖК-матрицы представляет собой слой молекул между двумя прозрачными электродами и два поляризационных фильтра. А пиксели в свою очередь составлены из субпикселей (рис. 2), формирующих различные цвета. Поверхность электродов специально обработана для изначальной ориентации молекул жидких кристаллов в одном направлении.


Рис. 2.

Такая структура поворачивает плоскость поляризации световой волны, и, доходя до второго фильтра, свет проходит его без потерь.

Если к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что приводит к разрушению винтовой упорядоченности. С ростом напряженности электрического поля спираль постепенно раскручивается, и через второй фильтр проходит все меньше и меньше света.

При определенной величине поля почти все молекулы становятся параллельны, и плоскость поляризации света практически не вращается. Это приводит к непрозрачности структуры. Таким образом, меняя напряжение, подаваемое на электроды, можно управлять степенью прозрачности и, соответственно, интенсивностью свечения субпикселей.

Основные параметры LCD TFT

Для описания TFT-дисплеев используется много параметров. Рассмотрим наиболее важные из них:

  • Диагональ экрана (Diagonal)- расстояние между противоположными углами матрицы. Диагональ экрана обычно измеряется и записывается в дюймах.
  • Разрешение (Resolution)- горизонтальный и вертикальный размеры экрана, измеренные в пикселях. Разрешение TFT-дисплея имеет одно фиксированное значение, все остальные достигаются интерполяцией. Чем больше пикселей на экране, тем качественнее изображение можно получить, и тем дисплей дороже.
  • Яркость (Brightness)- количество света, излучаемое дисплеем. Яркость обычно измеряется в канделах на квадратный метр (кд/м 2). Зависит от мощности лампы, подсветки и ее характеристик. Яркость желательно выбирать с запасом, чтобы картинка хорошо воспринималась при любом уровне внешней освещенности. С увеличением диагонали экрана повышается, как правило, и показатель яркости. Если для двухдюймовых панелей яркость может быть около 200 кд/м 2 , то для 10-дюймовых яркость уже порядка 300…400кд/м 2 .
  • Контрастность (Contrast)- отношение яркостей самой светлой и самой темной точек при заданной яркости подсветки. Чем меньше засвечен черный цвет, и чем выше яркость белого, тем выше контрастность. Чем больше это соотношение, тем лучше будет цветопередача изображения. Контрастность обычно записывается в виде 1000:1.
  • Время отклика (Response time)- минимальное время, за которое ячейка жидкокристаллической панели изменяет свою яркость. Чем оно меньше, тем лучше. Измеряется этот показатель в миллисекундах. Его оптимальное значение- менее 20мс. Малое время отклика очень важно при просмотре динамично меняющегося изображения на больших экранах. При его хорошем значении за изображением не должно быть никаких шлейфов.
  • Угол обзора (Viewing angle)- угол, при котором падение контраста изображения в центре панели достигает заданного (обычно 10). Появление этого параметра обусловлено тем, что дисплеи имеют ограниченный угол обзора, и контрастность изображения весьма сильно зависит от угла падения взгляда на LCD-панель. При определенных углах контраст резко падает, и чтение информации с экрана становится почти невозможным. Угол обзора обычно записывается в виде 170°/160°. Первая цифра относится к вертикали, а вторая- к горизонтали.

Интерфейсы LCD TFT

Для соединения ЖК-панели с управляющим микропроцессором Tianma предлагает на выбор несколько интерфейсов: параллельный цифровой интерфейс (CPU 8/16 bit), последовательный периферийный интерфейс (SPI), RGB-интерфейс и интерфейс низковольтной дифференциальной передачи сигналов (LVDS).

Остановимся подробнее на каждом из них:

  • CPU 8/16 bit- один из самых старых и распространенных интерфейсов. Применяется повсеместно в цифровой электронике. Состоит из шины адреса/данных (8 или 16 бит) и соответствующих управляющих сигналов. Использование этого интерфейса при подключении LCD-панелей постепенно отмирает. Его преимущественно используют на небольших ЖК-экранах.
  • SPI- еще один старый и очень распространенный интерфейс. Является простым и недорогим вариантом сопряжения микроконтроллера и дисплея. Имеется на борту практически любого микроконтроллера, и, как правило, кроме дисплея через SPI подключается еще много внешней периферии. Основным преимуществом является использование всего четырех линий: двух линий данных, тактирующего сигнала и сигнала выбора микросхемы. Используется также преимущественно на небольших экранах.
  • RGB- классический вариант подключения ЖК-панели. Своим названием обязан трем основным цветам, формирующим цвет пикселя: RED (красный), GREEN (зеленый) и BLUE (синий).

С точки зрения количества связей интерфейс является довольно громоздким. Больше всего цифровых линий уходит на передачу трех цветов: 6/8 линий (разрядов) на цвет — суммарно 18 или 24. Плюс к этому — сигналы тактовой частоты, строчной и кадровой синхронизации.

Интерфейс имеет много недостатков: большое количество связей, сложность синхронизации при передаче данных на высоких частотах (т.е. при работе с высоким разрешением) и низкая помехозащищенность.

  • LVDS- самый распространенный на текущий момент интерфейс, обеспечивающий высокую пропускную способность. Был разработан компанией National Semiconductor в 1994 году.

LVDS реализует дифференциальную передачу данных, что обеспечивает высокую помехозащищенность интерфейса и позволяет добиться высокой пропускной способности. LVDS подразумевает наличие в схеме трансмиттеров и ресиверов. Трансмиттер подключается к управляющему микроконтроллеру. Ресивер располагается на LCD-панели.

Передачу данных обеспечивают пять дифференциальных пар: четыре пары используются для передачи данных и одна — для передачи тактовых сигналов.

LVDS используется для передачи как 18-разрядного цветового кода (три цвета по 6 бит), так и для 24-разрядного цвета (три цвета по 8 бит). Передача одного цвета происходит сразу по нескольким дифференциальным парам. Сигналы строчной и кадровой синхронизации также поступают на LCD-панель через дифференциальные каналы.

Для увеличения пропускной способности этого интерфейса National Semiconductor расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных. Это усовершенствование получило название LDI — LVDS Display Interface. В документации Tianma такой вариант интерфейса обозначается как «LVDS 2 port».

Как было сказано выше, LDI получил восемь дифференциальных пар, предназначенных для передачи данных, и две дифференциальные пары тактовых сигналов, т.е. LDI, по сути дела, представляет собой два независимых полнофункциональных канала LVDS, передача данных в каждом из которых осуществляется собственным тактовым сигналом.

Соответственно, наличие двух каналов позволило вдвое увеличить пропускную способность интерфейса. Теперь за один пиксельный такт можно передать информацию о двух пикселях. При такой организации один канал предназначен для передачи четных точек экрана (Even), а второй — для нечетных (Odd).

Сенсорный экран LCD TFT

Часто TFT-дисплеи комплектуются сенсорными экранами, получившими сейчас небывалое распространение в мобильных телефонах, игровых консолях, платежных терминалах и прочих устройствах. Наиболее востребованы два типа сенсорных экранов: резистивные и емкостные.

Резистивные сенсорные экраны обладают рядом достоинств, которые позволили им занять очень большую долю на рынке. Самое главное их преимущество — низкая цена. Кроме этого резистивные экраны обладают стойкостью к загрязнению: т.е. загрязнение не нарушает работу сенсорного экрана. Экраны реагируют на прикосновение практически любым твердым гладким предметом.

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер регистрирует изменение сопротивления и преобразует его в координаты прикосновения.

Емкостные сенсорные экраны обладают лучшим светопропусканием и большей долговечностью по сравнению с резистивными, но восприимчивы к воздействию влаги и токопроводящих загрязнений. Экраны реагируют на прикосновение только токопроводящего предмета (пальца или специального стилуса). То есть, если вы захотите воспользоваться обычным стилусом или любым другим твердым предметом, экран на ваше касание никак не отреагирует. По точности определения координат емкостные экраны ни в чем не уступают резистивным.

Принцип работы экрана этого типа основан на способности человеческого тела проводить электрический ток. В основе емкостного экрана лежит стеклянная подложка, на поверхность которой нанесен резистивный материал, прикрытый токопроводящей пленкой. В момент касания пальцем экрана возникает электрический ток, а специальный контроллер вычисляет координаты касания.

LCD TFT компании Tianma

Ассортимент TFT-дисплеев, выпускаемых компанией Tianma, достаточно обширен. Формат данной статьи не позволяет рассказать о всех моделях, поэтому в таблице 1 представлен краткий обзор дисплеев, сгруппированных по диагонали и разрешению. Для детального ознакомления со всей линейкой лучше обратится к сайту производителя по адресу: http://tianma-europe.com/products/tftcolormodules/index.html .

Таблица 1. TFT-дисплеи компании Tianma

Диагональ, дюйм Разрешение Яркость, кд/м 2 Интерфейс
1,44 128×128 180 CPU 8 bit, SPI
1,45 128×128 140 CPU 8 bit
1,77 128×160 250 CPU 8 bit
2,0 176×220 220 CPU 8/16 bit
2,0 240×320 170…200 CPU 8/16 bit, SPI
2,2 240×320 90…220 CPU 8/16 bit, RGB18 bit, SPI
2,3 320×240 250 CPU 8/16 bit
2,4 240×320 180…310 CPU 8/16 bit
2,7 320×240 300 8-bit RGB/ CCIR656/601
2,8 240×320 210…260 CPU 8/16 bit
2,8 240×400 220 CPU 16 bit
3,2 240×400 250…350 RGB 18 bit, CPU 8/16/18 bit
3,5 240×320 80…100 RGB 6bit, SPI
3,5 320×240 300…350 RGB 24bit
3,5 272×480 300 CPU 8/9/16/18 bit
3,5 320×480 300 CPU / RGB
4,3 480×272 280…400 RGB 24bit
4,7 480×272 280…320 RGB 24bit
5,0 640×480 350 RGB 18 bit, SPI
5,0 800×480 250…300 RGB 24 bit
5,6 320×234 200…330 analog RGB
5,7 320×240 320…450 RGB 18 bit
5,7 640×480 400 RGB 18 bit
6,0 800×480 280…400 RGB 24 bit
6,2 800×480 400 RGB 24 bit
6,95 800×480 280…400 RGB 18 bit
6,95 1280×800 400 LVDS
7,0 800×480 280…500 RGB 24/18 bit
7,0 800×600 200 RGB 18 bit
7,0 1024×600 250 LVDS
8,0 800×600 250 RGB 24 bit
9,0 800×480 250 RGB 24 bit
9,7 1024×768 220…350 RGB 24 bit , LVDS
10,4 800×600 230…400 LVDS, RGB 18 bit
12,1 800×600 400…450 LVDS
15,0 1024×768 250…400 LVDS
19,0 1440×900 250 LVDS

Часть производимых компанией Tianma TFT-дисплеев комплектуется сенсорными экранами. Компания использует резистивные и емкостные экраны. Подавляющее большинство — резистивные.

Большинство TFT-дисплеев работает в расширенном температурном диапазоне -20…70°С.

TN- и STN-дисплеи

Первой технологией изготовления LCD-дисплеев была технология Twisted Nematic (TN). Она была разработана в 1973 году. Название обязано своим происхождением поведению жидких кристаллов, которые при размещении между выравнивающими панелями с бороздками выстраивалась в спираль.

TN-дисплеи имеют несколько существенных недостатков: низкая контрастность, большое время реакции, маленькие углы обзора и почти невозможное формирование оттенков. Но они обладают самой низкой стоимостью и поэтому находят самое широкое применение в недорогих изделиях с невысокими требованиями к качеству изображения.

Типичные представители этой технологии представлены на рисунках 3 и 4.

Рис. 3.

Рис. 4.

Развитием технологии TN LCD-дисплеев стала Super Twisted Nematic (STN). STN позволила увеличить угол кручения ориентации кристаллов внутри LCD-дисплея до 270 градусов. Это позволило увеличить контрастность изображения и размеры панелей.

На основе технологии TN, STN и их производных компания Tianma производит большое количество символьных и графических LCD-индикаторов.

Символьные индикаторы (рисунок 5) сделаны на технологии STN под управлением контроллера ST7066U. Подключение к внешнему управляющему микропроцессору происходит через 8-битный параллельный цифровой интерфейс. Возможные варианты количества символов: 8х1 (8 символов в строке, 1 строка), 8х2 (8 символов в строке, 2 строки), 16х1, 16х2, 20х2, 20х4 и 40х2. Подсветка выполнена из нескольких последовательно расположенных SMD-светодиодов. Стандартный цвет подсветки — желто-зеленый. Индикаторы рассчитаны на работу при температуре -20…70°С.


Рис. 5.

Монохромные графические индикаторы сделаны на основе STN или FSTN-технологии. Управляющих контроллеров здесь предложено достаточно много: ST7579, SBN1661, ST7565R, SDN8080 и другие. Подключение к внешнему управляющему микропроцессору происходит через последовательный либо параллельный 4/8-битный цифровой интерфейс. Доступны индикаторы со следующими разрешениями: 96х16, 96х32, 122х32, 128х64, 240х64, 240х128 и 320х240.

Подсветка выполнена из светодиодов. Индикаторы рассчитаны на работу при температуре -20…70°С.

Цветные графические индикаторы (рис. 6) сделаны на основе Color Super Twisted Nematic (СSTN) технологии. Технология довольно старая, но, тем не менее, все еще занимает небольшую долю ранка цветных дисплеев.

Рис. 6.

Управляющих контроллеров предложено несколько: ST7637, UC1697v, ST7669V и ST7628. Подключение к внешнему управляющему микропроцессору происходит через параллельный 8/16-битный цифровой интерфейс. Доступны следующие разрешения дисплеев: 96х64,128х128 и 128х160, 240х128.

Индикаторы рассчитаны на работу при температуре -20…70°С.

Заключение

В настоящий момент Tianma осваивает технологию активной матрицы на органических светодиодах (Active Matrix Organic Light-Emitting Diode, AMOLED). К концу этого года в Шанхае планируется выпуск первых OLED-дисплеев.

Технология подразумевает использование органических светодиодов в качестве светоизлучающих элементов и активной матрицы из TFT-транзисторов для управления светодиодами. Дисплеи AMOLED отличаются от TFT улучшенной цветопередачей, повышенной яркостью и более высокой контрастностью картинки. Еще один несомненный плюс этих экранов — пониженное энергопотребление, что позволяет более экономно расходовать заряд аккумулятора.

Выведя на рынок свои OLED-дисплеи, компания Tianma, несомненно, еще больше укрепит свое положение лидера на рынке жидкокристаллических дисплеев.

Получение технической информации, заказ образцов, поставка — e-mail:

Новые дисплеи компании Tianma

Компания Tianma выпустила новые дисплеи с возможностью подключения через параллельный или последовательный интерфейсы.

TM050QDH01

Данный дисплей разработан в первую очередь для видеонаблюдения и переносных портативных устройств. На борту этого 5" TFT-дисплея стоят два контроллера NT39403 + NT39207, он имеет VGA-разрешение 640 x 480, а также высокую контрастность и яркость.

TM022HDHT1 — интерфейсы SPI + RGB 18 бит

Компактный дисплей диагональю 2,2" с книжной ориентацией, разрешением 240 x 320, с универсальным контроллером ILI9340 ориентирован на переносные устройства. Имеет полуотражающий поляризатор, который позволяет использовать данный дисплей без подсветки.

TM020HBH03 — интерфейсы CPU 8/16 бит, 4-wire SPI

TFT-дисплей 2,0" с сенсорным экраном и достаточно широким для такой диагонали разрешением — 240 x 320.

TM035HBHT1 — интерфейсы RGB 6 бит + SPI

TM035HDHT1 — интерфейсы RGB 6 бит + SPI

Два дисплея с полуотражающим поляризатором и двумя интерфейсами. Отличие этих моделей друг от друга заключается в наличии сенсорной панели у TM035HBHT1.

Основные преимущества:

  • два интерфейса позволяют использовать эти TFT-дисплеи в различных применениях, особенно там, где не хватает выводов для стандартного RGB-интерфейса.
  • Низкое энергопотребление, как у TM050QDH01 (100мА при напряжении 9,75В), так и у TM022HDHT1 (20мА при напряжении 12,8В).
  • Компактный корпус позволяет встроить эти дисплеи практически в любой форм-фактор.
  • Некоторые дисплеи можно использовать без подсветки, что также сказывается на энергопотреблении.

Качество монитора (экрана) очень важно для сохранения зрения пользователей персональных компьютеров. Интенсивная работав в течении многих часов за монитором является очень сильной нагрузкой для зрения. Четкость изображения в большой степени зависит от размера точек люминофора экрана. Среднее расстояние между точками называется зерном. У различных мониторов этот параметр имеет значение от 0,21 до 0,31. Важными параметрами являются частота кадровой (вертикальной) развертки и строчной (горизонтальной) развертки и полоса пропускания видеосигнала. Чем выше частота кадров, тем устойчивее изображение и меньше утомление зрения (у качественных мониторов частота кадров 70-80 Гц). Частота строк в килогерцах определяется путем умножения количества строк, выводимых в одном кадре, на частоту кадровой развертки. Полоса частот пропускания видеосигнала (измеряемая в Мгц) определяется как произведение количества точек в строке и частоты строчной развертки. Ниже рассмотрены основные характеристики TFT LCD дисплеев:

1. Относительное отверстие.

Апертурное отношение (относительное отверстие) представляет собой отношение площади изображения , или эффективной площади апертуры, к общей площади матрицы ЖК дисплея. Чем это отношение больше, тем ярче дисплей , так как увеличивается площадь, занятая цветовыми элементами. Увеличивается также и контрастность . Относительное отверстие является важным показателем ЖК дисплея, используемым для оценки его качества.

2. Угол обзора.

Контрастность изображения ЖК монитора изменяется в зависимости от угла, под которым ведется его наблюдение. Угол зрения характеризует это изменение. Он может быть выражен через изменение контраста при смещении вверх/вниз и вправо/влево. Пропускная способность жидкого кристалла в большой степени зависит от угла наклона падающего света . Таким образом, изменения контраста определяются коэффициентом передачи на входе и выходе.

Обычно указываются значения углов обзора, например, 170°/170°. Требованием при определении углов обзора является сохранение контрастности не ниже 10:1 . При этом абсолютно безразлична цветопередача в таком положении, даже если цвета будут инвертированы (углы определяются в центре матрицы, а на углы мы, естественно, смотрим под углом).

3. Интерференция.

Интерференция выражается в отрицательном взаимовлиянии пикселей , когда активизированный напряжением пиксель влияет на соседний пассивный . Это явление характерно в основном для простых панелей типа STN , однако и в панелях с активными матрицами заметно незначительное влияние интерференции.
4. Яркость.

Для измерения яркости ЖК дисплеев используются такие величины, как NIT , Foot Lambert и кандела на квадратный метр - кд/м (cd/m).

Яркость дисплея определяется яркостью заднего освещения и пропускной способностью панели .

Пропускная способность жидкого кристалла низка , поэтому для усиления яркости изображения используют апертурную решетку с большим относительным отверстием , поляризационные панели и цветовые фильтры с высокой пропускной способностью или призмы.

5. Масштабирование изображения при многорежимной работе.

Для мониторов TFT рекомендуемое разрешение XGA (1024х768) и SXGA (1280х1024), кроме того, эти мониторы обеспечивают поддержку полноэкранных расширенных режимов SVGA и VGA. Однако при разрешении, соответствующем режиму SVGA и меньшем, символы и изображения могут получиться грубыми и нестабильными. Причина в том, что базовое число пикселей для 14" и 15" TFT панелей было выбрано для режима XGA . Поэтому для воспроизведения изображений в режимах SVGA или VGA они должны быть подвергнуты преобразованию.

Решение данной проблемы лежит в сфере конкурентоспособности фирмы в данной рыночной ситуации. Компании предпринимают специальные меры к тому, чтобы обеспечить качественное изображение при многорежимной работе монитора. Разработана и реализована функция усовершенствованного масштабирования изображения (Image Enhancement Function), которая, используя метод нелинейной интерполяции для увеличения картинки, позволяет получить ее качественное воспроизведение при разрешении, отличном от базового.

6. Время отклика .

Этот показатель означает минимальное время, за которое ячейка жидкокристаллической панели изменяет цвет. Используют два способа измерения скорости матрицы: black to black (чёрный-белый-чёрный), и gray to gray (между градациями серого), причем значения этих способов оценки очень сильно различаются. При изменении состояния ячейки между крайними положениями (чёрный-белый) на кристалл подаётся максимальное напряжение, и он поворачивается с максимальной скоростью (эту характеристику и указывают обычно в характеристиках современных мониторов: 8, 6, иногда и 4 мс . При смещении кристаллов между градациями серого на ячейку подаётся значительно меньшее напряжение , так как их нужно точно позиционировать для получения нужного оттенка, а поэтому и времени для этого затрачивается намного больше (от 14 мс – до 28 мс). Совсем недавно смогли найти достаточно приемлемый способ решения этой проблемы. На ячейку подаётся максимальное напряжение (или сбрасывается до нуля), а в нужный момент моментально выводится на нужное для удержания положения кристалла. Но при всех преимуществах этого способа, значительно увеличивается сложность чёткого управления напряжением с частотой, превышающей частоту развёртки . Кроме того, управляющий импульс нужно высчитывать с учётом начального положения кристаллов (Samsung уже представила модели с технологией Digital Capacitance Compensation , которая реально обеспечивает показатели в 8-6 мс для матриц PVA).

7. Контрастность изображения.

Значение контрастности определяется по соотношению яркости матрицы в состоянии «чёрный» и «белый» (меньше засвечен чёрный цвет и чем выше яркость белого, тем выше контрастность). Этот показатель важен для качественного просмотра видео изображений и, для хорошего отображения любого изображения (например, для S-IPS среднее значение – 400:1 , а для PVA – до 1000:1). Но заявленные в характеристиках монитора значения замерялись для матрицы , а не для монитора , причем на специальном стенде, когда на матрицу подаётся строго стандартное напряжение, подсветка питается строго стандартным током и т.д.).

8. Цветопередача.

Этот показатель не всегда корректен. Большинство матриц, произведённых по современным технологиям, поддерживают 24-битную цветопередачу (исключением являются некоторые мониторы PVA от Samsung - никакой системы в установке 18- или 24-битных PVA компанией Samsung не прослеживается).

Для многих жидкокристаллические дисплеи (LCD) ассоциируются, прежде всего, с плоскими мониторами, "крутыми" телевизорами, ноутбуками, видеокамерами и сотовыми телефонами. Некоторые добавят сюда КПК, электронные игры, банковские автоматы. Но существует еще множество областей, где необходимы дисплеи с высокой яркостью, прочной конструкцией, работающие в широком диапазоне температур.

Плоские дисплеи нашли применение там, где критичными параметрами являются минимальные энергопотребление, вес и габариты. Машиностроение, автомобильная промышленность, железнодорожный транспорт, морские буровые установки, горное оборудование, наружные торговые точки, авиационная электроника, морской флот, специальные транспортные средства, системы безопасности, медицинское оборудование, вооружение - вот далеко не полный перечень применений жидкокристаллических дисплеев.

Постоянное развитие технологий в этой области позволило снизить стоимость производства LCD до такого уровня, при котором произошел качественный переход: дорогая экзотика стала обыденным явлением. Важным фактором быстрого распространения ЖК-дисплеев в промышленности стала и простота применения.

В этой статье рассматриваются основные параметры различные типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения (метод "побольше и подешевше" практически всегда оказывается слишком дорогим).

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Технология

В настоящее время при производстве LCD применяются две технологии (рис.1): пассивная матрица (PMLCD-STN) и активная матрица (AMLCD).

Технологии MIM-LCD и Diode-LCD не получили широкого распространения и поэтому не будем на них тратить время.

Рис. 1. Виды технологий жидкокристаллических дисплеев

STN (Super Twisted Nematic)- матрица, состоящая из ЖК-элементов с изменяемой прозрачностью.

TFT (Thin Film Transistor)- активная матрица, в которой каждый пиксел управляется отдельным транзистором.

По сравнению с пассивной матрицей, TFT LCD имеет более высокую контрастность, насыщенность, меньшее время переключения (нет "хвостов" у движущихся объектов).

Управление яркостью в жидкокристаллическом дисплее основано на поляризации света (курс общей физики): свет поляризуется, проходя через поляризационный фильтр (с определенным углом поляризации). При этом наблюдатель видит только снижение яркости света (почти в 2 раза). Если за этим фильтром поставить еще один такой фильтр, то свет будет полностью поглощаться (угол поляризации второго фильтра перпендикулярен углу поляризации первого) или полностью проходить (углы поляризации совпадают). При плавном изменении угла поляризации второго фильтра интенсивность проходящего света будет также плавно изменяться.

Принцип действия и "бутербродная" структура всех TFT LCD примерно одинакова (рис. 2). Свет от лампы подсветки (неоновая или светодиоды) проходит через первый поляризатор и попадает в слой жидких кристаллов, управляемых тонкопленочным транзистором (TFT). Транзистор создает электрическое поле, которое формирует ориентацию жидких кристаллов. Пройдя такую структуру, свет меняет свою поляризацию и будет - или полностью поглощен вторым поляризационным фильтром (черный экран), или не будет поглощаться (белый), или поглощение будет частичным (цвета спектра). Цвет изображения определяют цветовые фильтры (аналогично электронно-лучевым трубкам, каждый пиксел матрицы состоит из трех субпикселов - красного, зеленого и голубого).


Рис. 2. Структура TFT LCD

Пиксел TFT

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Это может быть вертикальная полоса, мозаичная структура или дельта-структура (рис. 3). Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении m x n активная матрица содержит 3m x n транзисторов и субпикселов. Шаг пиксела (с тремя субпикселами) для 15.1" TFT ЖК-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" (1280 x 1024 точки)- 0.28 мм. TFT LCD имеют физическое ограничение, которое определяется максимальной площадью экрана. Не ждите разрешения 1280 x 1024 при диагонали 15" и шаге точки 0.297 мм.


Рис. 3. Структура цветного фильтра

На близком расстоянии точки явственно различимы, но это не беда: при формировании цвета используется свойство человеческого глаза смешивать цвета при угле зрения менее 0,03°. На расстоянии 40 см от ЖК-дисплея при шаге между субпикселами 0,1 мм угол зрения составит 0,014° (цвет каждого субпиксела различит только человек с орлиным зрением).

Типы ЖК-дисплеев

TN (Twist Nematic) TFT или TN+Film TFT - первая технология, появившаяся на рынке ЖК-дисплеев, основное достоинство которой& - дешевизна. Недостатки: черный цвет больше похож на темно-серый, что приводит к низкой контрастности изображения, "мертвые" пиксели (при выходе из строя транзистора) очень яркие и заметные.

IPS (In-Pane Switching) (Hitachi) или Super Fine TFT (NEC, 1995 год). Характеризуется наибольшим углом обзора и высокой точностью цветопередачи. Угол обзора расширен до 170°, остальные функции - как у TN+Film (время отклика порядка 25мс), практически идеальный черный цвет. Преимущества: хорошая контрастность, "мертвый" пиксель - черный.

Super IPS (Hitachi), Advansed SFT (производитель - NEC). Достоинства: яркое контрастное изображение, искажения цвета почти незаметны, увеличены углы обзора (до 170° по вертикали и по горизонтали) и обеспечена исключительная четкость.

UA-IPS (Ultra Advanced IPS), UA-SFT (Ultra Advanced SFT) (NEC). Время реакции достаточно для обеспечения минимальных искажений цвета при просмотре экрана под разными углами, повышенная прозрачность панели и расширение цветовой гаммы при достаточно высоком уровне яркости.

MVA (Multi-Domain Vertical Alignment) (Fujitsu).Основное преимущество - наименьшее время реакции и высокая контрастность. Главный недостаток - высокая стоимость.

PVA (Patterned Vertical Alignment) (Samsung). Микроструктурное вертикальное размещение ЖК.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в "бутерброде" (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

  • пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;
  • отражающий (reflective) применяется в калькуляторах и часах;
  • проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы, как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive) . В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка) (рис. 4).По этой технологии сделаны большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой. Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.


Рис. 4. Конструкция жидкокристаллического дисплея пропускающего типа

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м2, при прямом солнечном свете - 1000 кд/м 2 . Яркости в 300 кд/м 2 можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30% энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света. В ЖК-дисплеях Fujitsu преобразователь заполняется жидкостью с коэффициентом рефракции, равным коэффициенту рефракции сенсорной панели, что значительно сокращает количество отраженного света (но сильно сказывается на стоимости).

Полупрозрачный тип дисплея (transflective) похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется т. н. частично отражающий слой (рис.5). Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.


Рис. 5. Конструкция жидкокристаллического дисплея полупрозрачного типа

Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective) имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки) (рис. 6), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.


Рис. 6. Конструкция жидкокристаллического дисплея отражающего типа

Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Мертвые пиксели. На плоской панели могут не работать несколько пикселей (они всегда одного цвета), которые появляются в процессе производства и восстановлению не подлежат.

Стандарт ISO 13406-2 определяет предельные значения количества дефектных пикселов на миллион. В соответствии с таблицей ЖК-панели делятся на 4 класса.

Таблица 1

Тип 1 - постоянно светящиеся пиксели (белый); Тип 2 - "мертвые" пиксели (черный); Тип 3 - дефектные красные, синие и зеленые субпиксели.

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90(видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора даёт технология MVA).

Время отклика (инерционность)- время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come-up time) и времени на выключение (come-down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране

FPS = 1 с/время отклика.

Яркость - преимущество ЖК-дисплея, которая в среднем в два раза выше показателей ЭЛТ: с увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приведёт к значительному усложнению её конструкции и повысит электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м 2 .

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки чёрного цвета, т.к. лампа подсветки включена постоянно и для получения тёмных тонов используется эффект поляризации. Чёрный цвет зависит от качества перекрытия светового потока подсветки.

ЖК-дисплеи как сенсоры. Снижение стоимости и появление моделей LCD, работающих в жестких условиях эксплуатации, позволило совместить в одном лице (в лице жидкокристаллического дисплея) средство вывода визуальной информации и средство ввода информации (клавиатура). Задача построения такой системы упрощается использованием контроллера последовательного интерфейса, который подключается, с одной стороны, к ЖК-дисплею, а с другой - непосредственно к последовательному порту (СОМ1 - СОМ4) (рис.7). Для управления, декодирования сигналов и подавления "дребезга" (если так можно назвать определение прикосновения) применяется PIC-контроллер (например, IF190 фирмы Data Display), обеспечивающий высокое быстродействие и точность определения точки прикосновения.


Рис. 7. Блок-схема TFT LCD на примере NL6448BC-26-01 дисплея фирмы NEC

Завершим на этом теоретические изыскания и перейдем к реалиям сегодняшнего дня, а точнее - к тому, что имеется сейчас на рынке жидкокристаллических дисплеев. Среди всех изготовителей TFT LCD рассмотрим продукцию NEC, Sharp, Siemens и Samsung. Выбор этих фирм обусловлен

  1. лидерством на рынке ЖК-дисплеев и технологий производства TFT LCD;
  2. доступностью продукции на рынке стран СНГ.

Компания NEC Corporation выпускает жидкокристаллические дисплеи (20% рынка) практически с момента их появления и предлагает не только широкий выбор, но и различные варианты исполнения: стандартный (Standard), специальный (Special) и особый (Specific). Стандартный вариант - компьютеры, офисное оборудование, домашняя электроника, коммуникационные системы и т.п. Специальное исполнение применяется на транспорте (любом: наземном и морском), системах управления движением, системах безопасности, медицинском оборудовании (не связанном с системами жизнеобеспечения). Для систем вооружений, авиации, космического оборудования, систем управления ядерными реакторами, систем жизнеобеспечения и других аналогичных предназначен особый вариант исполнения (понятно, что стоит это недешево).

Перечень выпускаемых ЖК-панелей для промышленного применения (инвертер для лампы подсветки поставляется отдельно) приведен в таблице 2, а блок-схема (на примере 10-дюймового дисплея NL6448BC26-01)- на рис. 8.


Рис. 8. Внешний вид дисплея

Таблица 2. Модели ЖК-панелей фирмы NEC

Модель Размер по диагонали, дюйм Количество пикселей Число цветов Описание
NL8060BC31-17 12,1 800x600 262144 Высокая яркость (350кд/м 2)
NL8060BC31-20 12,1 800x600 262144 Широкий угол обзора
NL10276BC20-04 10,4 1024x768 262144 -
NL8060BC26-17 10,4 800x600 262144 -
NL6448AC33-18A 10,4 640x480 262144 Встроенный инвертор
NL6448AC33-29 10,4 640x480 262144 Высокая яркость, широкий угол обзора, встроенный инвертор
NL6448BC33-46 10,4 640x480 262144 Высокая яркость, широкий угол обзора
NL6448CC33-30W 10,4 640x480 262144 Без подсветки
NL6448BC26-01 8,4 640x480 262144 Высокая яркость (450 кд/м 2)
NL6448BC20-08 6,5 640x480 262144 -
NL10276BC12-02 6,3 1024x768 16, 19M -
NL3224AC35-01 5,5 320x240 Full color
NL3224AC35-06 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор, тонкий
NL3224AC35-10 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-13 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-20 5,5 320x240 262, 144 Высокая яркость (400 кд/м 2)

Сыграла значительную роль в развитии LCD-технологий. Компания Sharp и сейчас находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. В 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы с разрешением 160х120 пикселов. Краткий перечень продукции - в таблице 3.

Таблица 3. Модели ЖК-панелей фирмы Sharp

Выпускает жидкокристаллические дисплеи с активной матрицей на низкотемпературных поликремниевых тонкопленочных транзисторах. Основные характеристики дисплеев с диагональю 10,5" и 15" приведены в таблице 4. Обратите внимание на диапазон рабочих температур и стойкость к ударам.

Таблица 4. Основные характеристики ЖК-дисплеев фирмы Siemens

Примечания:

I - встроенный инвертор l - в соответствии с требованиями стандарта MIL-STD810

Фирма выпускает жидкокристаллические дисплеи под торговой маркой "Wiseview™". Начав с выпуска 2-дюймовой TFT панели для поддержки Интернета и анимации в мобильных телефонах, Samsung теперь производит гамму дисплеев от 1,8" до 10,4" в сегменте малых и средних TFT LCD, причем некоторые модели предназначены для работы при естественном освещении (таблица 5).

Таблица 5. Основные характеристики ЖК-дисплеев Samsung малых и средних размеров

Примечания:

LED - светодиодная; CCFL - флуоресцентная лампа с холодным катодом;

В дисплеях используется технология PVA.

Выводы.

В настоящее время выбор модели жидкокристаллического дисплея определяется требованиями конкретного применения и в значительно меньшей степени - стоимостью LCD.

← Вернуться

×
Вступай в сообщество «l-gallery.ru»!
ВКонтакте:
Я уже подписан на сообщество «l-gallery.ru»